Danh mục

Quá trình ứng dụng vi mạch lập trình số trong bộ chuyển mạch BSC p1

Số trang: 10      Loại file: pdf      Dung lượng: 262.48 KB      Lượt xem: 11      Lượt tải: 0    
Jamona

Hỗ trợ phí lưu trữ khi tải xuống: 4,000 VND Tải xuống file đầy đủ (10 trang) 0
Xem trước 2 trang đầu tiên của tài liệu này:

Thông tin tài liệu:

Tham khảo tài liệu quá trình ứng dụng vi mạch lập trình số trong bộ chuyển mạch bsc p1, kỹ thuật - công nghệ, kĩ thuật viễn thông phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả
Nội dung trích xuất từ tài liệu:
Quá trình ứng dụng vi mạch lập trình số trong bộ chuyển mạch BSC p1 Quá trình ứng dụng vi mạch lập trình VAÊN TROÏNG bộ GVHD : TRAÀN số trongLUAÄN VAÊN TOÁT NGHIEÄP chuyển mạch BSC CHÖÔNG I : GIÔÙI THIEÄU CAÙC COÅNG LOGIC CÔ BAÛNI/ HAØM LOGIC VAØ (AND) , HOAËC (OR) ,KHOÂNG (NOT). 1/ Coång logic . Goïi A laø bieán soá nhò phaân coù möùc logic laø 0 hoaëc 1, vaø Y laø moät bieán soá nhòphaân tuøy thuoäc vaøo A: Y= f(A). Trong tröôøng hôïp naøy coù hai khaû naêng xaûy ra: - Y = A, A= 0 thì Y = 0 hay A= 1 thì Y = 1 - Y = A A= 0 thì Y = 1 hay A= 1 thì Y = 0 Khi Y tuøy thuoäc vaøo hai bieán soá nhò phaân A, B  Y = f(A,B) Vì bieán soá A,B chæ coù theå laø 0 hay 1 neân A vaø B chæ coù theå taïo ra 4 toå hôïpkhaùc nhau laø: A B 0 0 A Y ØMaïch 0 1 1 0 B 1 1 Baûng lieät keâ taát caû caùc toå hôïp khaû dó cuûa caùc bieán soá vaø haøm soá töông öùnggoïi laø baûng söï thaät. Khi coù 3 hay nhieàu bieán soá (A,B ,C) soá löôïng haøm soá khaû dótaêng nhanh. Maïch ñieän töû thöïc hieän quan heä logic : Y = f(A ) hay Y = f(A,B).goïi laø maïch logic, trong ñoù caùc bieán soá A,B .. laø caùc ngoû vaøo vaø haøm soáY laø caùcngoû ra. Moät maïch logic dieãn taû quan heä giöõa caùc ngoû vaøo vaø ngoû ra nghóa laø t`öïchieän ñöôïc moät haøm logic, do ñoù coù bao nhieâu haøm soá logic thì coù baáy nhieâumaïch logic . Löu yù raèng khi bieåu dieãn moái quan heä toaùn hoïc ta goïi laø haøm soá logic coøn khibieåu dieãn moái quan heä veà maïch tín hieäu ta goïi laø coång logic. 2/ Coång logic VAØ (AND). Haøm logic VAØ ñöôïc ñònh nghóa theo baûng söï thaät sau:Baûng söï thaät:ÖÙng duïng vi maïch soá laäp trình Trang 10LUAÄN VAÊN TOÁT NGHIEÄP GVHD : TRAÀN VAÊN TROÏNG A B Y 0 0 0 A 0 1 0 Y=A.B B 1 0 0 1 1 1 Kyù hieäu toaùn hoïc cuûa haøm soá VA.Ø Kí hieäu coång VAØ (AND) Y = A.B 3/ Coång logic HOAËC (OR). Haøm soá HOAËC cuûa hai bieán soá A,B ñöôïc ñònh nghóa ôû baûng söï thaät sau: Baûng söï thaät: A B Y 0 0 0 A Y 0 1 1 B 1 0 1 1 1 1 Kí hieäu coång HOAËC Ngoû ra Y laø 1 khi coù ít nhaát moät bieán soá laø 1, do ñoù chæ baèng 0 ôû tröôøng hôïp khi caûhai bieán soá baèng 0. Kyù hieäu toaùn hoïc cuûa coång HOAËC laø: Y = A+B 4/ Coång logic KHOÂNG (NOT). Haøm VAØ vaø haøm HOAËC taùc ñoäng leân hai hay nhieàu bieán soá trong khi ñoù haømKHOÂNG coù theå xem nhö chæ coù theå taùc ñoäng leân moät bieán soá. Baûng söï thaät : A Y = AY A Y 0 1 1 0 Kí hieäu coång NOT Haøm KHOÂNG coù taùc ñoäng phuû ñònh hay ñaûo .Sôû dó coù söï ñoàng hoùa naøy laø vìta ñang lieân heä vôùisoá nhò phaân coù hai traïng thaùi 0 hay 1. Do ñoù phuû ñònh cuûa 0laø1.ÖÙng duïng vi maïch soá laäp trình Trang 11LUAÄN VAÊN TOÁT NGHIEÄP GVHD : TRAÀN VAÊN TROÏNGII/ COÅNG LOGIC KHOÂNG -VAØ (NAND) , KHOÂNG-HOAËC (NOR). 1/ Coång logic NAND . Xeùt tröôøng hôïp coù hai bieán soá A,B ngoû ra ôû coång VAØ Y = A.B neân ngoû ra ôû coångKHOÂNG laø ñaûo cuûa Y: Y = A.B Veà hoaït ñoäng cuûa coång NAND thì töø caùc toå hôïp cuûa A,B ta laäp baûng traïng thaùi roàilaáy ñaûo ñeå coù Y ñaûo. Tuy nhieân coù theå ñi tröïc tieáp baèng caùch laäp baûng s ...

Tài liệu được xem nhiều: