Danh mục

quy hoạch phát triển hệ thống điện, chương 6

Số trang: 8      Loại file: pdf      Dung lượng: 283.24 KB      Lượt xem: 29      Lượt tải: 0    
Hoai.2512

Xem trước 2 trang đầu tiên của tài liệu này:

Thông tin tài liệu:

một nhà máy điện có thể dùng 4 loại than để sản xuất điện. Biết - lượng điện năng yêu cầu hàng năm của nhà máy :A[MWh] - suất tiêu hao than của loại than thứ i là qi - Giá thành sản xuất điện năng của loại than i là ci [đ/MWh] (i=1,2,3,4) - Lượng than loại i cung cấp hàng năm để sản xuất điện không được vượt quá Qi - Tổng lượng than của cả 4 loại cung cấp hàng năm để sản xuất điện không được vượt quá Q∑ Cần xác định lượng điện năng được...
Nội dung trích xuất từ tài liệu:
quy hoạch phát triển hệ thống điện, chương 6 Chương 6: Bài toán dạng chính tắc, bài toán dạngmở rộng,Hãy trình bày phương pháp quy hoạch số nguyên I- Quy hoạch tuyến tính: 1. Đặt bài toán: Một nhà máy điện có thể dùng 4 loại than để sản xuất điện. Biết - lượng điện năng yêu cầu hàng năm của nhà máy :A[MWh] - suất tiêu hao than của loại than thứ i là qi - Giá thành sản xuất điện năng của loại than i là ci [đ/MWh] (i=1,2,3,4) - Lượng than loại i cung cấp hàng năm để sản xuất điện không được vượt quá Qi - Tổng lượng than của cả 4 loại cung cấp hàng năm để sản xuất điện không được vượt quá Q∑ Cần xác định lượng điện năng được sản xuất hàng năm từ từng loại than để đạt cực tiểu về chi phí sản xuất điện năng. 2. Lời giải: Nếu gọi lượng điện năng được sản xuất hàng năm từ loại than thứ i là xi [MWh] (i=1,2,3,4) .. bài toán có thể được trình bày như sau: - Xác định X= {x1, x2, x3, x4 } sao cho: f(X) = c1x1 + c2x2 + c3x3 + c4x4  min - Với các ràng buộc: x1 + x2 + x3 + x4 = A q1x1 + q2x2 + q3x3 + q4x4  Q q1x1  Q1 q 2x 2  Q 2 q3x3  Q3 q4x4  Q4 xi  0 (i=1,2,3,4)3. Các dạng bài toán quy hoạch tuyến tính: A- Dạng tổng quát j= 1,..n Tìm X={xi } thỏa mãn đồng thời các điều kiện: n 1) f(X)   c j x j  min(max) j 1 n 2) g i ( X )   aij x j (; ; )bi (i  1, m) j 1 Trong đó: - f(X) là hàm mục tiêu - xj là các ẩn - cj , aij , bi là những hằng số tự do B- Dạng chính tắc: Tìm X= {xj }, j=1,..,n thỏa mãn đồng thời các điều kiện sau n 1) f(X) =  c j x j  min(max) j1 n 2) gi(X) =  a ij x j  bi (i  1, m) j1 3) xj ≥ 0 ; bi ≥ 0 trong đó cj , aij , bi là các hằng số tự do Người ta có thể đưa dạng tổng quát về dạng chính tắcnếu gặp các trường hợp sau: n 1-  a x  b j 1 ij j Thêm vào vế trái phương trình một lượng ẩn i xn+i > 0, ta có: n n  a ij x j  b i   a ij x j  (x n  i )  b i j 1 j 1 n 2-  a x  b j1 ij , bớt vào vế trái của phương trình một lượng j i ẩn xn+i > 0, ta có: n n  a ij x j  b i   a ij x j  (x n i )  b i j 1 j 1 3- Trường hợp xj ≤ 0 th ì đ ặt tj= - xj ≥ 0 4- Trường hợp không biết dấu của ẩn xj thì đặt xj = xj1 - xj2 trong đ ó xj1  0; xj2  0 Bài toán dạng tổng quát sẽ trở thành bài toán dạng chính t ắc C- Dạng chuẩn tắc: là bài toán có dạng sau: T nìm X= {xj }, j= 1,...,n thỏa mãn đồng thời các điều  jx j  kiệncsau: min(max) j1 1- F(X)= n m x i   a i ,m h x m  h  b i ; (i  1, m) 2- Gi(X)= h 1 3- xj≥0; bi ≥0 Ma trận hệ số của hệ phư ng trình ràng buộc có dạng sau: 1 0 0 ... 0 a1,m+1 a1,m+2 ... a1,n 0 1 0 ... 0 a2,m+1 a2,m+2 ... a2,n 0 0 1 ... 0 a3,m+1 a3,m+2 ... a3,n ........................... 0 0 0 ... 1 am,m+1 am,m+2 ... am,n Như vậy có thể suy ra cách nhận biết dạng chuẩn tắc là ma trận hệ số của hệ phương trình ràng buộc kiểu m x n phải có chứa ma trận đơn vị c ấp m. Ví dụ: xét bài toán sau có phải dạng chuẩn không? Cho f(X) = 2x1 + 5x2 + 4x3 + x4 - 5x5  min Với các điều kiện ràng buộc như sau: 1) x1 + 2x2 + 4x3 - 3x5 = 152 2) 4x2 + 2x3 + x4 + 3x5 = 60 3) 3x2+ 4x5 + x6 = 36 Với xj  0 (j=1...6) Ma trận hệ số của hệ phương trình trên như sau: 1 2 4 0 3 0 0 4 2 1 3 0   0  3 0 0 4 1  ...

Tài liệu được xem nhiều:

Gợi ý tài liệu liên quan: