Tài liệu hướng dẫn linh kiện điên tử - phần 2
Số trang: 17
Loại file: pdf
Dung lượng: 405.12 KB
Lượt xem: 12
Lượt tải: 0
Xem trước 2 trang đầu tiên của tài liệu này:
Thông tin tài liệu:
Tham khảo tài liệu 'tài liệu hướng dẫn linh kiện điên tử - phần 2', kỹ thuật - công nghệ, điện - điện tử phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả
Nội dung trích xuất từ tài liệu:
Tài liệu hướng dẫn linh kiện điên tử - phần 2 Giáo trình Linh Kiện Điện Tử III. SỰ PHÂN BỐ CỦA ĐIỆN TỬ THEO NĂNG LƯỢNG: Gọi ∆nE= là số điện tử trong một đơn vị thể tích có năng lượng từ E đến E+∆E. ∆n E Theo định nghĩa, mật độ điện tử trung bình có năng lượng từ E đến E+∆E là tỉ số . ∆E Giới hạn của tỉ số này khi ∆E → 0 gọi là mật độ điện tử có năng lượng E. ∆n E dn E Ta có: ρ(E) = lim = (1) ∆E dE ∆E →0 dn E = ρ(E).dE Vậy, (2) Do đó, nếu ta biết được hàm số ρ( E ) ta có thể suy ra được số điện tử có năng lượng trong khoảng từ E đến E+dE bằng biểu thức (2). Ta thấy rằng ρ(E) chính là số trạng thái năng lượng E đã bị điện tử chiếm. Nếu gọi n(E) là số trạng thái năng lượng có năng ρ(E) lượng E mà điện tử có thể chiếm được. Người ta chứng minh được rằng: tỉ số bằng n (E) một hàm số f(E), có dạng: ρ( E ) 1 f (E) = = E −E F n (E) 1+ e KT Trong đó, K=1,381.10-23 J/0K (hằng số Boltzman) 1,381.10 −23 = 8,62.10 −5 (V/ 0 K) K= e EF năng lượng Fermi, tùy thuộc vào bản chất kim loại. Mức năng lượng này nằm trong dải cấm. Ở nhiệt độ rất thấp (T≈00K) Nếu EEF, ta có f(E)=0 Vậy f(E) chính là xác suất để tìm thấy điện tử có năng lượng E ở nhiệt độ T. Hình sau đây là đồ thị của f(E) theo E khi T≈00K và khi T=2.5000K. T=00K ρ(E) f(E) 1 T=00K ½ T=25000K T=25000K EF E EF E Trang 18 Biên soạn: Trương Văn Tám Hình 8 + Giáo trình Linh Kiện Điện Tử Ta chấp nhận rằng: 1 N(E) = γ.E 2 γ là hằng số tỉ lệ. Lúc đó, mật độ điện tử có năng lượng E là: 1 ρ(E ) = f (E ).N (E ) = γ.E .f (E ) 2 Hình trên là đồ thị của ρ(E) theo E tương ứng với nhiệt độ T=00K và T=2.5000K. Ta thấy rằng hàm ρ(E) biến đổi rất ít theo nhiệt độ và chỉ biến đổi trong vùng cận của năng lượng EF. Do đó, ở nhiệt độ cao (T=2.5000K) có một số rất ít điện tử có năng lượng lớn hơn EF, hầu hết các điện tử đều có năng lượng nhỏ hơn EF. Diện tích giới hạn bởi đường biểu diễn của ρ(E) và trục E cho ta số điện tử tự do n chứa trong một đơn vị thể tích. EF EF 1 3 2 n = ∫ ρ(E).dE = ∫ γ.E .dE = γ.E F 2 2 3 0 0 (Để ý là f(E)=1 và T=00K) Từ đây ta suy ra năng lượng Fermi EF 2 ⎛ 3 n ⎞3 EF = ⎜ . ⎟ ⎜2 γ⎟ ⎝ ⎠ Nếu ta dùng đơn vị thể tích là m3 và đơn vị năng lượng là eV thì γ có trị số là: γ = 6,8.1027 2 Do đó, E F = 3,64.10 −19.n 3 Nếu biết được khối lượng riêng của kim loại và số điện tử tự do mà mỗi nguyên tử có thể nhả ra, ta tính được n và từ đó suy ra EF. Thông thường EF < 10eV. Thí dụ, khối lượng riêng của Tungsten là d = 18,8g/cm3, nguyên tử khối là A = 184, biết rằng mỗi nguyên tử cho v = 2 điện tử tự do. Tính năng lượng Fermi. Giải: Khối lượng mỗi cm3 là d, vậy trong mỗt cm3 ta có một số nguyên tử khối là d/A. Vậy trong mỗi cm3, ta có số nguyên tử thực là: Trang 19 Biên soạn: Trương Văn Tám Giáo trình Linh Kiện Điện Tử d 23 .A 0 với A0 là số Avogadro (A0 = 6,023.10 ) A Mỗi nguyên tử cho v = 2 điện tử tự do, do đó số điện tử tự do trong mỗi m3 là: d n= .A 0 .v.10 6 A Với Tungsten, ta có: 18,8 3 n= .6,203.10 23.2.10 6 ≈ 1,23.10 29 điện tử/m 184 ( ) 2 ⇒ E F = 3,64.10 −19. 1,23.10 29 3 ⇒ E F ≈ 8,95eV IV. CÔNG RA (HÀM CÔNG): Ta thấy rằng ở nhiệt độ thấp (T #00K), năng lượng tối đa của điện tử là EF (E Giáo trình Linh Kiện Điện Tử −Ew Trong đó, A0 = 6,023.1023 và K = 1,38.10-23 J/0K J th = A 0 T 2 e KT Đây là phương trình Dushman-Richardson. Người ta dùng phương trình này để đo EW vì ta có thể đo được dòng điện Jth; dòng điện này chính là dòng điện bảo hòa trong một đèn hai cực chân không có tim làm bằng kim loại muốn khảo sát. V. ĐIỆN THẾ TIẾP XÚC (TIẾP THẾ): Xét một nối C giữa hai kim loại I và II. Nếu ta dùng một Volt kế ...
Nội dung trích xuất từ tài liệu:
Tài liệu hướng dẫn linh kiện điên tử - phần 2 Giáo trình Linh Kiện Điện Tử III. SỰ PHÂN BỐ CỦA ĐIỆN TỬ THEO NĂNG LƯỢNG: Gọi ∆nE= là số điện tử trong một đơn vị thể tích có năng lượng từ E đến E+∆E. ∆n E Theo định nghĩa, mật độ điện tử trung bình có năng lượng từ E đến E+∆E là tỉ số . ∆E Giới hạn của tỉ số này khi ∆E → 0 gọi là mật độ điện tử có năng lượng E. ∆n E dn E Ta có: ρ(E) = lim = (1) ∆E dE ∆E →0 dn E = ρ(E).dE Vậy, (2) Do đó, nếu ta biết được hàm số ρ( E ) ta có thể suy ra được số điện tử có năng lượng trong khoảng từ E đến E+dE bằng biểu thức (2). Ta thấy rằng ρ(E) chính là số trạng thái năng lượng E đã bị điện tử chiếm. Nếu gọi n(E) là số trạng thái năng lượng có năng ρ(E) lượng E mà điện tử có thể chiếm được. Người ta chứng minh được rằng: tỉ số bằng n (E) một hàm số f(E), có dạng: ρ( E ) 1 f (E) = = E −E F n (E) 1+ e KT Trong đó, K=1,381.10-23 J/0K (hằng số Boltzman) 1,381.10 −23 = 8,62.10 −5 (V/ 0 K) K= e EF năng lượng Fermi, tùy thuộc vào bản chất kim loại. Mức năng lượng này nằm trong dải cấm. Ở nhiệt độ rất thấp (T≈00K) Nếu EEF, ta có f(E)=0 Vậy f(E) chính là xác suất để tìm thấy điện tử có năng lượng E ở nhiệt độ T. Hình sau đây là đồ thị của f(E) theo E khi T≈00K và khi T=2.5000K. T=00K ρ(E) f(E) 1 T=00K ½ T=25000K T=25000K EF E EF E Trang 18 Biên soạn: Trương Văn Tám Hình 8 + Giáo trình Linh Kiện Điện Tử Ta chấp nhận rằng: 1 N(E) = γ.E 2 γ là hằng số tỉ lệ. Lúc đó, mật độ điện tử có năng lượng E là: 1 ρ(E ) = f (E ).N (E ) = γ.E .f (E ) 2 Hình trên là đồ thị của ρ(E) theo E tương ứng với nhiệt độ T=00K và T=2.5000K. Ta thấy rằng hàm ρ(E) biến đổi rất ít theo nhiệt độ và chỉ biến đổi trong vùng cận của năng lượng EF. Do đó, ở nhiệt độ cao (T=2.5000K) có một số rất ít điện tử có năng lượng lớn hơn EF, hầu hết các điện tử đều có năng lượng nhỏ hơn EF. Diện tích giới hạn bởi đường biểu diễn của ρ(E) và trục E cho ta số điện tử tự do n chứa trong một đơn vị thể tích. EF EF 1 3 2 n = ∫ ρ(E).dE = ∫ γ.E .dE = γ.E F 2 2 3 0 0 (Để ý là f(E)=1 và T=00K) Từ đây ta suy ra năng lượng Fermi EF 2 ⎛ 3 n ⎞3 EF = ⎜ . ⎟ ⎜2 γ⎟ ⎝ ⎠ Nếu ta dùng đơn vị thể tích là m3 và đơn vị năng lượng là eV thì γ có trị số là: γ = 6,8.1027 2 Do đó, E F = 3,64.10 −19.n 3 Nếu biết được khối lượng riêng của kim loại và số điện tử tự do mà mỗi nguyên tử có thể nhả ra, ta tính được n và từ đó suy ra EF. Thông thường EF < 10eV. Thí dụ, khối lượng riêng của Tungsten là d = 18,8g/cm3, nguyên tử khối là A = 184, biết rằng mỗi nguyên tử cho v = 2 điện tử tự do. Tính năng lượng Fermi. Giải: Khối lượng mỗi cm3 là d, vậy trong mỗt cm3 ta có một số nguyên tử khối là d/A. Vậy trong mỗi cm3, ta có số nguyên tử thực là: Trang 19 Biên soạn: Trương Văn Tám Giáo trình Linh Kiện Điện Tử d 23 .A 0 với A0 là số Avogadro (A0 = 6,023.10 ) A Mỗi nguyên tử cho v = 2 điện tử tự do, do đó số điện tử tự do trong mỗi m3 là: d n= .A 0 .v.10 6 A Với Tungsten, ta có: 18,8 3 n= .6,203.10 23.2.10 6 ≈ 1,23.10 29 điện tử/m 184 ( ) 2 ⇒ E F = 3,64.10 −19. 1,23.10 29 3 ⇒ E F ≈ 8,95eV IV. CÔNG RA (HÀM CÔNG): Ta thấy rằng ở nhiệt độ thấp (T #00K), năng lượng tối đa của điện tử là EF (E Giáo trình Linh Kiện Điện Tử −Ew Trong đó, A0 = 6,023.1023 và K = 1,38.10-23 J/0K J th = A 0 T 2 e KT Đây là phương trình Dushman-Richardson. Người ta dùng phương trình này để đo EW vì ta có thể đo được dòng điện Jth; dòng điện này chính là dòng điện bảo hòa trong một đèn hai cực chân không có tim làm bằng kim loại muốn khảo sát. V. ĐIỆN THẾ TIẾP XÚC (TIẾP THẾ): Xét một nối C giữa hai kim loại I và II. Nếu ta dùng một Volt kế ...
Tìm kiếm theo từ khóa liên quan:
thủ thuật phần cứng tài liệu phần cứng linh kiện điện tử hướng dẫn linh kiện điện tử chuyên đề linh kiện điện tửGợi ý tài liệu liên quan:
-
Báo cáo thực tập điện tử - Phan Lê Quốc Chiến
73 trang 244 0 0 -
Giáo trình Linh kiện điện tử: Phần 2 - TS. Nguyễn Tấn Phước
78 trang 228 1 0 -
Thiết kế, lắp ráp 57 mạch điện thông minh khuếch đại thuật toán: Phần 2
88 trang 208 0 0 -
Báo cáo môn học vi xử lý: Khai thác phần mềm Proteus trong mô phỏng điều khiển
33 trang 174 0 0 -
12 trang 149 0 0
-
ĐỒ ÁN: THIẾT KẾ HỆ THỐNG CUNG CẤP ĐIỆN CHO NHÀ MÁY CƠ KHÍ TRUNG QUY MÔ SỐ 2
91 trang 147 0 0 -
Báo cáo bài tập lớn môn Kỹ thuật vi xử lý: Thiết kế mạch quang báo - ĐH Bách khoa Hà Nội
31 trang 131 0 0 -
Đề tài: THIẾT KẾ HỆ THỐNG MÔ HÌNH ROBOT ĐỊA HÌNH QUÂN SỰ .
61 trang 104 0 0 -
Sửa chữa và lắp ráp máy tính tại nhà
276 trang 101 0 0 -
Báo cáo thực tập tốt nghiệp Lắp ráp, cài đặt, sửa chữa máy tính
77 trang 82 0 0