Danh mục

Thuật toán phân lớp ID3

Số trang: 9      Loại file: pdf      Dung lượng: 492.64 KB      Lượt xem: 28      Lượt tải: 0    
Hoai.2512

Phí tải xuống: 3,000 VND Tải xuống file đầy đủ (9 trang) 0
Xem trước 2 trang đầu tiên của tài liệu này:

Thông tin tài liệu:

Thuật toán ID3 Thuật toán ID3 được phát biểu bởi Quinlan (trường đại học Syney, Australia) và được công bố vào cuối thập niên 70 của thế kỷ 20. Sau đó, thuật toán ID3 được giới thiệu và trình bày trong mục Induction on decision trees, machine learning năm 1986.
Nội dung trích xuất từ tài liệu:
Thuật toán phân lớp ID3 1) Thuật toán ID3 Thuật toán ID3 được phát biểu bởi Quinlan (trường đại học Syney, Australia) và được công bố vào cuối thập niên 70 của thế kỷ 20. Sau đó, thuật toán ID3 được giới thiệu và trình bày trong mục Induction on decision trees, machine learning năm 1986. ID3 được xem như là một cải tiến của CLS với khả năng lựa chọn thuộc tính tốt nhất để tiếp tục triển khai cây tại mỗi bước. ID3 xây dựng cây quyết định từ trên- xuống (top -down) [5] . 1.1. Entropy đo tính thuần nhất của tập dữ liệu : dùng để đo tính thuần nhất của một tập dữ liệu. Entropy của một tập S được tính theo công thức (1) Entropy(S)= - P + log 2 ( P  )  P - log 2 ( P  ) (2.1) Trong trường hợp các mẫu dữ liệu có hai thuộc tính phân lớp yes (+), no (-). Ký hiệu p+ là để chỉ tỷ lệ các mẫu có giá trị của thuộc tính quyết định là yes, và p- là tỷ lệ các mẫu có giá trị của thuộc tính quyết định là no trong tập S. Trường hợp tổng quát, đối với tập con S có n phân lớp thì ta có công thức sau: n Entropy(S)=  (- P log i=1 i 2 ( Pi )) (2.2) Trong đó Pi là tỷ lệ các mẫu thuộc lớp i trên tập hợp S các mẫu kiểm tra. Các trường hợp đặc biệt - Nếu tất cả các mẫu thành viên trong tập S đều thuộc cùng một lớp thì Entropy(S) =0 - Nếu trong tập S có số mẫu phân bổ đều nhau vào các lớp thì Entropy(S) =1 - Các trường hợp còn lại 0< Entropy(S) n Information(A i ) = - log 2 ( pi )  Entropy(S) (2.3) i=1 - Giá trị Gain của thuộc tính A trong tập S ký hiệu là Gain(S,A) và được tính theo công thức sau: Sv Gain(S , A)  Information(A) - Entropy(A)= Entropy(S)-  vvalue(A) S Entropy(Sv ) (2.4) Trong đó :  S là tập hợp ban đầu với thuộc tính A. Các giá trị của v tương ứng là các giá trị của thuộc tính A.  Sv bằng tập hợp con của tập S mà có thuộc tính A mang giá trị v.  |Sv| là số phần tử của tập Sv.  |S| là số phần tử của tập S. Trong quá trình xây dựng cây quyết định theo thuật toán ID3 tại mỗi bước triển khai cây, thuộc tính được chọn để triển khai là thuộc tính có giá trị Gain lớn nhất. Hàm xây dựng cây quyết định trong thuật toán ID3 [2] Function induce_tree(tập_ví_dụ, tập_thuộc_tính) begin if mọi ví dụ trong tập_ví_dụ đều nằm trong cùng một lớp then return một nút lá được gán nhãn bởi lớp đó else if tập_thuộc_tính là rỗng then return nút lá được gán nhãn bởi tuyển của tất cả các lớp trong tập_ví_dụ else begin chọn một thuộc tính P, lấy nó làm gốc cho cây hiện tại; xóa P ra khỏi tập_thuộc_tính; với mỗi giá trị V của P begin tạo một nhánh của cây gán nhãn V; Đặt vào phân_vùng các ví dụ trong tập_ví_dụ có giá trị V V tại thuộc tính P; Gọi induce_tree(phân_vùng , tập_thuộc_tính), gắn kết quả V vào nhánh V end end end Ví dụ minh họa Chúng ta hãy xét bài toán phân loại xem ta có đi chơi tennis ứng với thời tiết nào đó không. Giải thuật ID3 sẽ học cây quyết định từ tập hợp các ví dụ sau: Quang Ngày Nhiệt độ Độ ảm Gió Chơi Tennis cảnh Dl Nắng Nóng Cao Nhẹ Không D2 Nắng Nóng Cao Mạnh Không D3 Âm u Nóng Cao Nhẹ Có D4 Mưa Ấm áp Cao Nhẹ Có D5 Mưa Mát Trung bình Nhẹ Có D6 Mưa Mát Trung bình Mạnh Không D7 Âm u Mát Trung bình Mạnh Có D8 Nắng Ấm áp Cao Nhẹ Không D9 Nắng Mát Trung bình Nhẹ Có Dl0 Mưa Ấm áp Trung bình Nhẹ Có Dl1 Nắng Ấm áp Trung bình Mạnh Có Dl2 Âm u Ấm áp Cao Mạnh Có Dl3 Âm u Nóng Trung bình Nhẹ Có Dl4 Mưa Ấm áp Cao Mạnh Không Bảng 2.1. Tập dữ liệu ví dụ cho chơi Tennis Tập dữ liệu này bao gồm 14 ví dụ. Mỗi ví dụ biểu diễn cho tình trạng thời tiết gồm các thuộc tính quang cảnh, nhiệt độ, độ ẩm và gió; và đều có một thuộc tính phân loại ‘chơi Tennis’(có, không). ‘Không’ nghĩa là không đi chơi tennis ứng với thời tiết đó, ‘Có’ nghĩa là chơi tennis ứng với thời tiết đó. Giá trị phân loại ở đây chỉ có hai loại (có, không), hay còn ta nói phân loại của tập ví dụ của khái niệm này thành hai lớp (classes). Thuộc tính ‘Chơi tennis’ còn được gọi là thuộc tính đích (target attribute). Mỗi thuộc tính đều có một tập các giá trị hữu hạn. Thuộc tính quang cảnh có ba giá tr ...

Tài liệu được xem nhiều:

Gợi ý tài liệu liên quan: