Tối ưu hóa phần 9
Số trang: 19
Loại file: pdf
Dung lượng: 487.78 KB
Lượt xem: 17
Lượt tải: 0
Xem trước 2 trang đầu tiên của tài liệu này:
Thông tin tài liệu:
Định lý 18. Cho một tập lồi khác rỗng S ⊂ Rn và f: S → R là hàm lồi. Lúc đó, ∀ x ∈ S và hướng bất kỳ d ∈ R n sao cho x + λd ∈ S với λ 0 đủ nhỏ, luôn tồn tại đạo hàm theo hướng: f (x + λd) − f (x) . f/( x ,d) = lim λ→0+ λ Chứng minhChọn λ2 λ1 0 và đủ nhỏ. Do f là hàm lồi nên ta có:⎡λ ⎛ ⎛ λ ⎞ ⎤ λ λ ⎞ f ( x + λ1d...
Nội dung trích xuất từ tài liệu:
Tối ưu hóa phần 9 Định lý 18. Cho một tập lồi khác rỗng S ⊂ Rn và f: S → R là hàm lồi. Lúc đó, ∀ x ∈ S vàhướng bất kỳ d ∈ R n sao cho x + λd ∈ S với λ > 0 đủ nhỏ, luôn tồn tại đạo hàm theo hướng: f (x + λd) − f (x)f/( x ,d) = lim . λ λ→0+ Chứng minh Chọn λ2 > λ1 > 0 và đủ nhỏ. Do f là hàm lồi nên ta có: ⎡λ λ⎞⎤ λ ⎛ ⎛ λ⎞ f ( x + λ1d ) = f ⎢ 1 ( x + λ 2d ) + ⎜ 1 − 1 ⎟ x ⎥ ≤ 1 f ( x + λ 2d ) + ⎜ 1 − 1 ⎟ f ( x ) . ⎢ λ2 λ2 ⎠ ⎥ λ2 λ2 ⎠ ⎝ ⎝ ⎣ ⎦ f ( x + λ1d ) − f ( x ) f ( x + λ 2d ) − f ( x ) ≤ Từ đây suy ra: . Như vậy, hàm số λ1 λ2[ f (x + λd) − f (x)] / λ phụ thuộc λ > 0 là hàm không giảm. Bởi vậy ta có giới hạn: f ( x + λd ) − f ( x ) f ( x + λd ) − f ( x ) = inf lim (đpcm). λ λ + λ> 0 λ→03.2. Dưới vi phân của hàm lồi Định nghĩa 9. Cho f: S → R là hàm lồi. Lúc đó: Epigraph của f là tập hợp Epi f = {(x, y) : x ∈ S, y ≥ f (x)} ⊂ Rn+1. Hypograph của f là tập hợp Hyp f = {(x, y) : x ∈ S, y ≤ f (x)} ⊂ Rn+1. Xem minh họa hình VI.7. y Epi f y=f(x) x Hyp f 0 Hình VI.7. Minh họa Epigraph và Hypograph Có thể chứng minh được tính chất sau đây: Cho f: S →R là hàm lồi, lúc đó Epi f là tập lồivà ngược lại. Định nghĩa 10 (khái niệm dưới vi phân). Xét tập lồi khác rỗng S ⊂ Rn và f: S → R là hàm lồi. Lúc đó véc tơ ξ ∈ Rn được gọi là dướivi phân của f tại x nếu f (x) ≥ f (x) + ξT (x − x) , ∀x ∈ S . Ví dụ 4. i) Xét hàm y = f(x) = x2. Lúc đó véc tơ ξ = (2 x ) ∈ R1 chính là dưới vi phân củahàm đã cho tại x (trên hình VI.8a: ξT = tgα ). 153 y y π 4 f(x) f(x) ξT = tgα α f (x) f (x) x x x x x x 0 0 b) f(x) = ⎪x⎪ a) f(x) = x2 Hình VI.8. Minh họa hình học dưới vi phân ii) Xét hàm y = f(x) = ⎪x⎪. ∀ x ≠ 0, véc tơ ξ = sign x ∈ R1 chính là dưới vi phân duy nhất π (trên hình VI.8b: ξT = tgcủa hàm đã cho tại x = 1 tại x > 0). Còn tại 4x = 0, tồn tại vô số dưới vi phân ξ ∈ [–1, 1] ⊂ R1. Định lý 19 (về sự tồn tại dưới vi phân). Cho f: S → R là hàm lồi. Lúc đó với ∀ x ∈ int S luôn tồn tại véc tơ ξ sao cho siêu phẳng {(x, y) : y = f (x) + ξ (x − x)} ( x,f (x)) ...
Nội dung trích xuất từ tài liệu:
Tối ưu hóa phần 9 Định lý 18. Cho một tập lồi khác rỗng S ⊂ Rn và f: S → R là hàm lồi. Lúc đó, ∀ x ∈ S vàhướng bất kỳ d ∈ R n sao cho x + λd ∈ S với λ > 0 đủ nhỏ, luôn tồn tại đạo hàm theo hướng: f (x + λd) − f (x)f/( x ,d) = lim . λ λ→0+ Chứng minh Chọn λ2 > λ1 > 0 và đủ nhỏ. Do f là hàm lồi nên ta có: ⎡λ λ⎞⎤ λ ⎛ ⎛ λ⎞ f ( x + λ1d ) = f ⎢ 1 ( x + λ 2d ) + ⎜ 1 − 1 ⎟ x ⎥ ≤ 1 f ( x + λ 2d ) + ⎜ 1 − 1 ⎟ f ( x ) . ⎢ λ2 λ2 ⎠ ⎥ λ2 λ2 ⎠ ⎝ ⎝ ⎣ ⎦ f ( x + λ1d ) − f ( x ) f ( x + λ 2d ) − f ( x ) ≤ Từ đây suy ra: . Như vậy, hàm số λ1 λ2[ f (x + λd) − f (x)] / λ phụ thuộc λ > 0 là hàm không giảm. Bởi vậy ta có giới hạn: f ( x + λd ) − f ( x ) f ( x + λd ) − f ( x ) = inf lim (đpcm). λ λ + λ> 0 λ→03.2. Dưới vi phân của hàm lồi Định nghĩa 9. Cho f: S → R là hàm lồi. Lúc đó: Epigraph của f là tập hợp Epi f = {(x, y) : x ∈ S, y ≥ f (x)} ⊂ Rn+1. Hypograph của f là tập hợp Hyp f = {(x, y) : x ∈ S, y ≤ f (x)} ⊂ Rn+1. Xem minh họa hình VI.7. y Epi f y=f(x) x Hyp f 0 Hình VI.7. Minh họa Epigraph và Hypograph Có thể chứng minh được tính chất sau đây: Cho f: S →R là hàm lồi, lúc đó Epi f là tập lồivà ngược lại. Định nghĩa 10 (khái niệm dưới vi phân). Xét tập lồi khác rỗng S ⊂ Rn và f: S → R là hàm lồi. Lúc đó véc tơ ξ ∈ Rn được gọi là dướivi phân của f tại x nếu f (x) ≥ f (x) + ξT (x − x) , ∀x ∈ S . Ví dụ 4. i) Xét hàm y = f(x) = x2. Lúc đó véc tơ ξ = (2 x ) ∈ R1 chính là dưới vi phân củahàm đã cho tại x (trên hình VI.8a: ξT = tgα ). 153 y y π 4 f(x) f(x) ξT = tgα α f (x) f (x) x x x x x x 0 0 b) f(x) = ⎪x⎪ a) f(x) = x2 Hình VI.8. Minh họa hình học dưới vi phân ii) Xét hàm y = f(x) = ⎪x⎪. ∀ x ≠ 0, véc tơ ξ = sign x ∈ R1 chính là dưới vi phân duy nhất π (trên hình VI.8b: ξT = tgcủa hàm đã cho tại x = 1 tại x > 0). Còn tại 4x = 0, tồn tại vô số dưới vi phân ξ ∈ [–1, 1] ⊂ R1. Định lý 19 (về sự tồn tại dưới vi phân). Cho f: S → R là hàm lồi. Lúc đó với ∀ x ∈ int S luôn tồn tại véc tơ ξ sao cho siêu phẳng {(x, y) : y = f (x) + ξ (x − x)} ( x,f (x)) ...
Tìm kiếm theo từ khóa liên quan:
Tối ưu hóa ứng dụng tối ưu hóa kỹ thuật tối ưu hóa áp dụng công nghệ thông tin tối ưu hóa tối ưu hóa bằng công nghệ thông tinTài liệu liên quan:
-
Tóm tắt luận án tiến sỹ Một số vấn đề tối ưu hóa và nâng cao hiệu quả trong xử lý thông tin hình ảnh
28 trang 225 0 0 -
Giáo trình Nhập môn cơ sở dữ liệu: Phần 2 - Trần Thành Trai
145 trang 81 0 0 -
BÀI TẬP TỔNG HỢP - QUY HOẠCH TUYẾN TÍNH
3 trang 68 0 0 -
Giáo trình Tối ưu hóa - PGS.TS. Nguyễn Hải Thanh
187 trang 45 0 0 -
Tổng hợp bài tập Tối ưu hoá: Phần 2
152 trang 36 0 0 -
Giáo trình tối ưu hóa - Chương 5
31 trang 35 0 0 -
Bài giảng Lý thuyết tối ưu - Phan Lê Na
181 trang 29 0 0 -
7 trang 29 0 0
-
Tổng hợp bài tập Tối ưu hoá: Phần 1
177 trang 28 0 0 -
Giáo trình tối ưu hóa - Chương 2
28 trang 28 0 0