Danh mục

Tổng hợp các dạng bài toán liên qua tới khảo sát hàm số

Số trang: 37      Loại file: pdf      Dung lượng: 471.67 KB      Lượt xem: 10      Lượt tải: 0    
Hoai.2512

Xem trước 4 trang đầu tiên của tài liệu này:

Thông tin tài liệu:

1. ( 2,0 i m )Cho hàm s y = 2x3 + 9mx2 + 12m2x + 1, trong ó m là tham s .1. Kh o sát s bi n thiên và vth c a hàm s ã cho khi m = - 1.2. Tìm t t c các giá tr c a mhàm s có c ci t i xC , c c ti u t i xCT th a mãn:x2C = xCT.
Nội dung trích xuất từ tài liệu:
Tổng hợp các dạng bài toán liên qua tới khảo sát hàm số Tổng hợp các dạng bài toánliên qua tới khảo sát hàm số y = sin(cos x) + cos(sin x) CHUYÊN ĐỀ HÀM SỐ y = x 2 . sin x 2 − cos 2 2 x y = (2 − x 2 ). cos x + 2 x. sin x Chương 1 sin x − cos x y= y = sin x 3 + cos x 2 sin x + cos x ĐẠOHÀM y = sin n x. cos nx y = cos n x. sin nx A)Tính đạo hàm bằng công thức y = sin 5 3 x + cos 5 3 xBT1 sin x − x cos x x x y= y = tg − cot g1) y = ( x 2 − 3x + 4)( x 3 − 2 x 2 + 5 x − 3) sin x + x cos x 2 42) y = (2 x + 1)(3x + 2)(4 x + 3)(5 x + 4) y = 4.3 cot g 3 x + 3 cot g 8 x3) y = ( x 3 − 3 x 2 + 3 x + 1) 2 − 2( x − 1) 3 cos x + x 2 sin x y= 24) y = (2 x + 1) 4 + (3x + 2) 4 − ( x 2 − 4 x + 1) 3 x cos x − sin x5) y = ( x + 1) 2 ( x + 2) 3 ( x + 4) 4 1 1 y = tgx − tg 3 x − tg 5 xBT2 3 5 ax + b 3x − 5 Chương 21) y = y= cx + d 7x − 8 TÍNHĐƠNĐIỆUCỦAHÀMSỐ ax 2 + bx + c 2x 2 − 5x + 62) y = y= mx + n − 3x + 4 1)TÌMĐIỀUKIỆNCỦATHAMSỐĐỂHÀM ax 2 + bx + c 5x 2 − 4 x − 9 SỐĐƠNĐIỆU y= y=3) mx 2 + nx + p − 2 x 2 + 3x − 8 A1)Hàm đa thức ax 3 + bx 2 + cx + d y= BT1 (ĐH Ngoại Thương 1997)4) mx 3 + nx 2 + px + q Tìm m để y = x 3 + 3x 2 + (m + 1).x + 4m 1 − x3 x3 nghịch biến (-1;1)5) y = y= 2−x 3 + x3 BT2 4 4 x3 − x  2x + 1  x + 1 Tìm m để y = x 3 − 3(2m + 1).x 2 + (12m + 5).x + 26) y = 3 y=  +   x −1  1− x  x + x +1 đồng biến trên (-∞;-1) U [2; +∞) 3 3  3x 2 − 5 x + 4   − 5 x + 7  BT37) y =   +    x +1   x +1  1  Tìm m để y = mx + 2(m − 1).x + ( m − 1).x + m 3 2 3BT3 đồng biến trên (-∞;0) U [2; +∞)1) y x + x + x + x + x BT4 x+3 6x + 5 Tìm m để y = x 3 − 6mx 2 + 2(12m − 5).x + 12) y = y= đồng biến trên (-∞;0) U (3; +∞) x +1 x2 + 2 2 x +1 x +1 y=3) y = BT5 (ĐH Thuỷ Lợi 1997) x2 − x +1 x −1 m −1 3 2 1 2 Tìm m để y = .x + m.x 2 + (3m − 2).x4) y = y= − ...

Tài liệu được xem nhiều: