Towards an uncertainty reduction framework for land-cover change prediction using possibility theory
Số trang: 15
Loại file: pdf
Dung lượng: 3.97 MB
Lượt xem: 8
Lượt tải: 0
Xem trước 2 trang đầu tiên của tài liệu này:
Thông tin tài liệu:
This paper presents an approach for reducing uncertainty related to the process of land-cover change (LCC) prediction. LCC prediction models have, almost, two sources of uncertainty which are the uncertainty related to model parameters and the uncertainty related to model structure. These uncertainties have a big impact on decisions of the prediction model.
Nội dung trích xuất từ tài liệu:
Towards an uncertainty reduction framework for land-cover change prediction using possibility theory
Nội dung trích xuất từ tài liệu:
Towards an uncertainty reduction framework for land-cover change prediction using possibility theory
Tìm kiếm theo từ khóa liên quan:
LCC prediction Parameter uncertainty Structural uncertainty Possibility theory Sensitivity analysisTài liệu liên quan:
-
Lecture Management accounting: An Australian perspective: Chapter 17 - Kim Langfield-Smith
30 trang 21 0 0 -
Prediction of bridge deck condition rating based on artificial neural networks
11 trang 16 0 0 -
13 trang 15 0 0
-
Predicting fire resistance ratings of timber structures using artificial neural networks
12 trang 13 0 0 -
A strategy to identify congestions of transmission networks in N-1 contingency: Khanh Hoa case study
6 trang 11 0 0 -
17 trang 9 0 0
-
Economic analysis of soil-based and soilless farming systems: A case study from Da Lat city
16 trang 8 0 0 -
An artificial intelligence approach for concrete hardened property estimation
13 trang 7 0 0 -
13 trang 7 0 0
-
15 trang 6 0 0