Danh mục

Tuyển tập các đề thi đại học, cao đẳng môn Toán qua các năm

Số trang: 66      Loại file: pdf      Dung lượng: 624.86 KB      Lượt xem: 12      Lượt tải: 0    
tailieu_vip

Xem trước 7 trang đầu tiên của tài liệu này:

Thông tin tài liệu:

Tài liệu tham khảo: Tuyển tập các đề thi đại học, cao đẳng môn Toán qua các năm dành cho các thí sinh đang ôn thi chuẩn bị cho kỳ thi tuyển sinh đại học cao đẳng sắp tới. Với các đề thi có kèm đáp án và hướng dẫn giải các bạ sẽ dễ dàng tham khảo và rèn luyện kỹ năng giải đề thi. Chúc các bạn thành công.
Nội dung trích xuất từ tài liệu:
Tuyển tập các đề thi đại học, cao đẳng môn Toán qua các nămTuy n t p các thi th i h c, cao ng trên t p chí Toán h c và Tu i tr qua các năm TRƯ NG TRUNG H C PH THÔNG TH XÃ CAO LÃNH -------------- T P TH L P CHUYÊN TOÁN NIÊN KHÓA 2006 – 2009 “Nguy n c Tu n - G i t ng - http://MathVN.com” TUY N T P CÁC THI TH I H C , CAO NG TRÊN T P CHÍ CÁC NĂ QUA CÁC NĂM ---- Tháng 03-2009 ---- T p th l p 12T – THPT Th xã Cao Lãnh – Niên khoá 2006-2009 – GVCN: Th y Nguy n ình HuyTuy n t p các thi th i h c, cao ng trên t p chí Toán h c và Tu i tr qua các năm B GIÁO D C VÀ ÀO T O THI TH I H C, CAO NG S 1 T P CHÍ TOÁN H C VÀ TU I TR Môn thi: TOÁN NĂM 2003 Th i gian làm bài: 180 phútCâu I: (2 i m) Cho hàm s : y = x 4 − mx 2 + 4 x + m. 1. Kh o sát và v th hàm s khi m = 0. 2. Tìm các giá tr c a m th hàm s có ba i m c c tr sao cho tam giác có nh là ba i m c c tr nh n g c t a làm tr ng tâm.Câu II: (2 i m) 1. Gi i các phương trình : log 2002− x (log 2002− x x ) = log x (log x (2002 − x )) 2a + x 2. Tìm t t c các giá tr c a a t p xác nh c a hàm s f (x ) = ch a t p giá tr c a hàm 2a − x 1 s g (x ) = 2 . x + 2 x + 4a − 2Câu III: (2 i m) 1. Gi i phương trình : ( cos 8 x + sin 8 x = 64 cos14 x + sin 14 x ) 2. Hai ư ng cao AA1 , BB1 c a tam giác nh n ABC c t nhau t i H . G i R là bán kính ư ng tròn ngo i ti p tam giác ABC . Ch ng minh r ng di n tích tam giác HA1 B1 b ng R 2 . sin 2C. cos A. cos B. cos C .Câu IV: (2 i m) 1. Cho t di n OABC có: AOB + BOC = 1800 g i là OD ư ng phân giác trong c a góc AOB ∧ Hãy tính góc BOD . 2. Trong không gian v i h t a êcác vuông góc Oxyz cho hai ương th ng : 2 x + y + 1 = 0 3 x + y − z + 3 = 0 (∆)  ( ∆ )  x − y + z −1 = 0 2 x − y + 1 = 0 a. Ch ng minh r ng hai ư ng th ng ( ∆ ) và ( ∆ ) c t nhau. b. Vi t phương trình chính t c c a c p ư ng th ng phân giác c a các góc t o b i ( ∆ ) và ( ∆ ) .Câu V: (2 i m) π 4 sin 2 xdx 1. Tính tích phân : I = ∫ −π cos 4 x ( tan 2 x − 2 tan x + 5 ) 4 2. Trong h p ng 2n viên bi có n viên bi gi ng h t nhau và n viên bi xanh i m t khác nhau. H i có bao nhiêu cách khác nhau l y n viên bi t h p ó. ------------------ H T ------------------- T p th l p 12T – THPT Th xã Cao Lãnh – Niên khoá 2006-2009 – GVCN: Th y Nguy n ình HuyTuy n t p các thi th i h c, cao ng trên t p chí Toán h c và Tu i tr qua các năm ÁP S HO C HƯ NG D N GI I S 1-2003:Câu I: 1. Các b n t gi i. 2. Áp d ng n lí Vi-ét b c ba. áp s : : m = 6.Câu II: 1. áp s : x = 1001. 3 + 17 2. áp s : a > . 8Câu III: 1. Phương trình vô nghi m. Áp d ng B T Cauchy. 2. Các b n t gi i.Câu IV: 1. áp s : BOD = 900. 2. a. Ch ng minh h có nghi m duy nh t. b. Dùng vectơ ơn v . 1 3 x+ z− 2 y 2 = = ; 1 1 −2 2 −3 5 + + + 14 ...

Tài liệu được xem nhiều: