Danh mục

Tuyển tập đề thi thử đại học môn toán (có đáp án)

Số trang: 54      Loại file: doc      Dung lượng: 2.86 MB      Lượt xem: 11      Lượt tải: 0    
Hoai.2512

Xem trước 6 trang đầu tiên của tài liệu này:

Thông tin tài liệu:

Câu I (2 điểm) Cho hàm số y = f (x) = 8x4 -9x2 +11. Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số.2. Dựa vào đồ thị (C) hãy biện luận theo m số nghiệm của phương trình8cos4x - 9cos2x +m = 0 với xÎ[0;p ] .
Nội dung trích xuất từ tài liệu:
Tuyển tập đề thi thử đại học môn toán (có đáp án)Bến bờ thành công không phụ người cố gắng……..SĐT: 0977467739 ĐỀ THI THỬ ĐẠI HỌC SỐ 1PHẦN CHUNG CHO TẤT CẢ CÁC THÍ SINH (7 điểm)Câu I (2 điểm) Cho hàm số y = f ( x) = 8x 4 − 9x 2 + 1 1. Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. 2. Dựa vào đồ thị (C) hãy biện luận theo m số nghiệm của phương trình 8cos 4 x − 9cos 2 x + m = 0 với x ∈ [0; π ] .Câu II (2 điểm) log 3 x ( x − 2)  x − 1 = x−2 1. Giải phương trình:  ÷  2  x + y + x 2 − y 2 = 12  2. Giải hệ phương trình:   y x 2 − y 2 = 12 Câu III (1 điểm) Tính diện tích của miền phẳng giới hạn bởi các đường y =| x 2 − 4 x | và y = 2 x .Câu IV (1 điểm) Cho hình chóp cụt tam giác đều ngo ại tiếp m ột hình c ầu bán kính r cho tr ước. Tính th ể tích hìnhchóp cụt biết rằng cạnh đáy lớn gấp đôi cạnh đáy nhỏ.Câu V (1 điểm) Định m để phương trình sau có nghiệm π  π π   4sin3xsinx + 4cos  3x - ÷cos  x + ÷− cos 2  2x + ÷+ m = 0  4  4  4PHẦN RIÊNG (3 điểm): Thí sinh chỉ làm một trong hai phần (Phần 1 hoặc phần 2)1. Theo chương trình chuẩn.Câu VI.a (2 điểm) 1. Cho ∆ ABC có đỉnh A(1;2), đường trung tuyến BM: 2 x + y + 1 = 0 và phân giác trong CD: x + y −1 = 0 . Viết phương trình đường thẳng BC.  x = −2 + t  2. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng (D) có phương trình tham số  y = −2t  z = 2 + 2t  .Gọi ∆ là đường thẳng qua điểm A(4;0;-1) song song với (D) và I(-2;0;2) là hình chi ếu vuông góc c ủa A trên (D). Trong các mặt phẳng qua ∆ , hãy viết phương trình của mặt phẳng có khoảng cách đến (D) là lớn nhất.Câu VII.a (1 điểm) Cho x, y, z là 3 số thực thuộc (0;1]. Chứng minh rằng 1 1 1 5 + + ≤ xy + 1 yz + 1 zx + 1 x + y + z2. Theo chương trình nâng cao.Câu VI.b (2 điểm)1. Cho hình bình hành ABCD có diện tích bằng 4. Biết A(1;0), B(0;2) và giao điểm I của hai đường chéo nằm trênđường thẳng y = x. Tìm tọa độ đỉnh C và D.Bến bờ thành công không phụ người cố gắng……..SĐT: 09774677392. Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1;5;0), B(3;3;6) và đường thẳng ∆ có phương trình tham số x = −1 + 2t y = 1 − t .Một điểm M thay đổi trên đường thẳng ∆ , xác định vị trí của điểm M để chu vi tam giác MAB đạt giá z = 2ttrị nhỏ nhất.Câu VII.b (1 điểm) Cho a, b, c là ba cạnh tam giác. Chứng minh 1  1 2 b c + + ÷+ + Bến bờ thành công không phụ người cố gắng……..SĐT: 0977467739 Xét phương trình 8cos 4 x − 9cos 2 x + m = 0 với x ∈ [0; π ] (1) Đặt t = cosx , phương trình (1) trở thành: 8t 4 − 9t 2 + m = 0 (2) 0,25 Vì x ∈ [0; π ] nên t ∈ [−1;1] , giữa x và t có sự tương ứng một đối một, do đó số nghiệm c ủa phương trình (1) và (2) bằng nhau. Ta có: (2) ⇔ 8t 4 − 9t 2 + 1 = 1 − m (3) Gọi (C1): y = 8t 4 − 9t 2 + 1 với t ∈ [−1;1] và (D): y = 1 – m. 0,25 Phương trình (3) là phương trình hoành độ giao điểm của (C1) và (D). Chú ý rằng (C1) giống như đồ thị (C) trong miền −1 ≤ t ≤ 1 . Dựa vào đồ thị ta có kết luận sau: 81 m> • ...

Tài liệu được xem nhiều: