Underwater acoustic signal recognition based on combination of multi-scale convolutional neural network and constant-Q transform
Số trang: 16
Loại file: pdf
Dung lượng: 1.70 MB
Lượt xem: 4
Lượt tải: 0
Xem trước 2 trang đầu tiên của tài liệu này:
Thông tin tài liệu:
This article proposes a multi-scale deep learning network to classify different underwater acoustic signal sources. The proposed network is cleverly designed with multiple branches, creating a multi-scale block which allows learning various spatial features of Constant-Q Transform spectrograms.
Nội dung trích xuất từ tài liệu:
Underwater acoustic signal recognition based on combination of multi-scale convolutional neural network and constant-Q transform
Nội dung trích xuất từ tài liệu:
Underwater acoustic signal recognition based on combination of multi-scale convolutional neural network and constant-Q transform
Tìm kiếm theo từ khóa liên quan:
Deep neural network Constant-Q transform Underwater acoustic signal classification Spatial feature Multiple branchesTài liệu liên quan:
-
XGBoost regression for estimating bearing capacity of concrete piles
9 trang 29 0 0 -
NeuNAC: A novel fragile watermarking algorithm for integrity protection of neural networks
14 trang 26 0 0 -
Development of Vietnamese speech synthesis system using deep neural networks
15 trang 20 0 0 -
8 trang 9 0 0
-
102 trang 9 0 0