Bài giảng Chương 3: Các đặc trưng của đại lượng ngẫu nhiên và véctơ ngẫu nhiên
Số trang: 20
Loại file: ppt
Dung lượng: 379.50 KB
Lượt xem: 20
Lượt tải: 0
Xem trước 2 trang đầu tiên của tài liệu này:
Thông tin tài liệu:
Bài giảng Chương 3: Các đặc trưng của đại lượng ngẫu nhiên và véctơ ngẫu nhiên tập trung trình bày các vấn đề cơ bản về kỳ vọng; phương sai; các đặc trưng khác của đại lượng ngẫu nhiên; kỳ vọng của hàm;... Mời các bạn cùng tìm hiểu và tham khảo nội dung thông tin tài liệu.
Nội dung trích xuất từ tài liệu:
Bài giảng Chương 3: Các đặc trưng của đại lượng ngẫu nhiên và véctơ ngẫu nhiên Chương 3.Các đặc trưng của đại lượng ngẫu nhiên và véctơ ngẫu nhiên. §1 Kỳ vọng 1. Định nghĩa Định nghĩa 1.1: Giả sử Ρ ( Χ = xi ) = pi � Ε ( Χ ) = xi pi i Định nghĩa 1.2: Giả sử X là liên tục và có hàm mật độ là + fX ( x) � Ε ( Χ) = x. f X ( x ) dx − Ý nghĩa:kỳ vọng E(X) là giá trị trung bình của X 2. Tính chất: (1) E(C) = C,(2) E(CX) = C.E(X) ,C là hằng số (3) E(X+Y) = E(X) + E(Y) (4) X, Y độc lập suy ra E(XY) = E(X).E(Y) Khoa Khoa Học và Máy Tính Xác Suất Thống Kê. Chương 3 1 @Copyright 2010 §2: PHƯƠNG SAI 1.Định nghĩa 2.1:Phương sai của đại lượng ngẫu nhiên X D ( Χ) = Ε ( Χ − Ε ( Χ) ) � 2 � là: � � D( Χ) = Ε ( Χ ) − ( Ε ( Χ ) ) 2 2 Định lý 2.1 : + Ε ( Χ 2 ) = xi2 . pi nếu X rời rạc i + + Ε ( Χ2 ) = x 2 . f Χ ( x ) dx nếu X liên tục − 2. Tính chất: (1) D(C) = 0 ; (2) D(CX) = C 2 .D ( Χ ) (3) X,Y độc lập suy ra D(X+Y) = D(X)+D(Y) (4) D(C+ X) = D(X), với C là hằng số Khoa Khoa Học và Máy Tính Xác Suất Thống Kê. Chương 3 2 @Copyright 2010 3. Độ lệch: σ ( Χ) = D ( Χ) §3.Các đặc trưng khác của đại lượng ngẫu nhiên 1.Mod X(giá trị của X ứng với xác suất lớn nhất) Định nghĩa 3.1: Giả sử X rời rạc và Ρ ( Χ = xi ) = pi � Mod Χ = xi0 , pi0 = Maxpi Định nghĩa 3.2: Giả sử X liên tục và có hàm f X ( x ) , ta có � Mod Χ = x0 ; f X ( x0 ) = Maxf X ( x ) 2. Med X(medium – trung vị X) Định nghĩa 3.3: Med Χ = m � Ρ ( Χ < m ) �1/ 2, Ρ ( X > m ) �1/ 2 m 1 Định lý 3.1: Nếu X liên tục thì MedX = m � f X ( x ) dx = − 2 Khoa Khoa Học và Máy Tính Xác Suất Thống Kê. Chương 3 3 @Copyright 2010 3.Moment Định nghĩa 3.4: Moment cấp k cuả đại lượng ngẩu nhiên X ( ) k đối với số a là Ε � X − a � � � a = 0: moment gốc a = E(X):moment trung tâm. 4. Hệ số nhọn và hệ số bất đối xứng(xem SGK) cos x, x [ 0, π / 2] Ví dụ 3.1: Χ ~ fX ( x) = 0, x [ 0, π / 2] π /2 π Ε ( Χ) = x.cos xdx = − 1 0 2 Khoa Khoa Học và Máy Tính Xác Suất Thống Kê. Chương 3 4 @Copyright 2010 2 π /2 �π � D( X ) = x cos xdx − � − 1�= π − 3 2 10 44 2 4 43 �2 � ( ) Ε X2 Mod X =0 m m Med X � �f ( x ) dx = �cos xdx = 1/ 2 − X 0 � sin m = 1/ 2 � m = π / 6 Ví dụ 3.2 :Cho X có bảng phân phối xác suất như sau Χ 1 2 ... k ... m −1 m m + 1.... k −1 m−2 m −1 Ρ p pq ... pq ... pq pq ... pq m ... Khoa Khoa Học và Máy Tính Xác Suất Thống Kê. Chương 3 5 @Copyright 2010 1 1 E( X ) = kp.q k −1 = p. = ( 1− q) 2 k =1 p 2 + �1� k −1 D( X ) = k pq −� � 2 1 4 2 43 k =1 �p � Ε( Χ ) 2 2 1+ q �1 � 1+ q 1 q = p. − � � = − = (1 − q )3 �p � p2 p2 p2 Mod X = 1 p ( 1 + q + ... + q m − 2 ) 1/ 2 Med X =m p ( 1 + q + ... + q m − 2 + q m −1 ) 1/ 2 Khoa Khoa Học và Máy Tính Xác Suất Thống Kê. Chương 3 6 @Copyright 2010 . 1 − q m −1 m −1 1 q �p. 1/ 2 � 1 − q m −1 1 / 2 � 2 �� 1 − q � �m �� � ...
Nội dung trích xuất từ tài liệu:
Bài giảng Chương 3: Các đặc trưng của đại lượng ngẫu nhiên và véctơ ngẫu nhiên Chương 3.Các đặc trưng của đại lượng ngẫu nhiên và véctơ ngẫu nhiên. §1 Kỳ vọng 1. Định nghĩa Định nghĩa 1.1: Giả sử Ρ ( Χ = xi ) = pi � Ε ( Χ ) = xi pi i Định nghĩa 1.2: Giả sử X là liên tục và có hàm mật độ là + fX ( x) � Ε ( Χ) = x. f X ( x ) dx − Ý nghĩa:kỳ vọng E(X) là giá trị trung bình của X 2. Tính chất: (1) E(C) = C,(2) E(CX) = C.E(X) ,C là hằng số (3) E(X+Y) = E(X) + E(Y) (4) X, Y độc lập suy ra E(XY) = E(X).E(Y) Khoa Khoa Học và Máy Tính Xác Suất Thống Kê. Chương 3 1 @Copyright 2010 §2: PHƯƠNG SAI 1.Định nghĩa 2.1:Phương sai của đại lượng ngẫu nhiên X D ( Χ) = Ε ( Χ − Ε ( Χ) ) � 2 � là: � � D( Χ) = Ε ( Χ ) − ( Ε ( Χ ) ) 2 2 Định lý 2.1 : + Ε ( Χ 2 ) = xi2 . pi nếu X rời rạc i + + Ε ( Χ2 ) = x 2 . f Χ ( x ) dx nếu X liên tục − 2. Tính chất: (1) D(C) = 0 ; (2) D(CX) = C 2 .D ( Χ ) (3) X,Y độc lập suy ra D(X+Y) = D(X)+D(Y) (4) D(C+ X) = D(X), với C là hằng số Khoa Khoa Học và Máy Tính Xác Suất Thống Kê. Chương 3 2 @Copyright 2010 3. Độ lệch: σ ( Χ) = D ( Χ) §3.Các đặc trưng khác của đại lượng ngẫu nhiên 1.Mod X(giá trị của X ứng với xác suất lớn nhất) Định nghĩa 3.1: Giả sử X rời rạc và Ρ ( Χ = xi ) = pi � Mod Χ = xi0 , pi0 = Maxpi Định nghĩa 3.2: Giả sử X liên tục và có hàm f X ( x ) , ta có � Mod Χ = x0 ; f X ( x0 ) = Maxf X ( x ) 2. Med X(medium – trung vị X) Định nghĩa 3.3: Med Χ = m � Ρ ( Χ < m ) �1/ 2, Ρ ( X > m ) �1/ 2 m 1 Định lý 3.1: Nếu X liên tục thì MedX = m � f X ( x ) dx = − 2 Khoa Khoa Học và Máy Tính Xác Suất Thống Kê. Chương 3 3 @Copyright 2010 3.Moment Định nghĩa 3.4: Moment cấp k cuả đại lượng ngẩu nhiên X ( ) k đối với số a là Ε � X − a � � � a = 0: moment gốc a = E(X):moment trung tâm. 4. Hệ số nhọn và hệ số bất đối xứng(xem SGK) cos x, x [ 0, π / 2] Ví dụ 3.1: Χ ~ fX ( x) = 0, x [ 0, π / 2] π /2 π Ε ( Χ) = x.cos xdx = − 1 0 2 Khoa Khoa Học và Máy Tính Xác Suất Thống Kê. Chương 3 4 @Copyright 2010 2 π /2 �π � D( X ) = x cos xdx − � − 1�= π − 3 2 10 44 2 4 43 �2 � ( ) Ε X2 Mod X =0 m m Med X � �f ( x ) dx = �cos xdx = 1/ 2 − X 0 � sin m = 1/ 2 � m = π / 6 Ví dụ 3.2 :Cho X có bảng phân phối xác suất như sau Χ 1 2 ... k ... m −1 m m + 1.... k −1 m−2 m −1 Ρ p pq ... pq ... pq pq ... pq m ... Khoa Khoa Học và Máy Tính Xác Suất Thống Kê. Chương 3 5 @Copyright 2010 1 1 E( X ) = kp.q k −1 = p. = ( 1− q) 2 k =1 p 2 + �1� k −1 D( X ) = k pq −� � 2 1 4 2 43 k =1 �p � Ε( Χ ) 2 2 1+ q �1 � 1+ q 1 q = p. − � � = − = (1 − q )3 �p � p2 p2 p2 Mod X = 1 p ( 1 + q + ... + q m − 2 ) 1/ 2 Med X =m p ( 1 + q + ... + q m − 2 + q m −1 ) 1/ 2 Khoa Khoa Học và Máy Tính Xác Suất Thống Kê. Chương 3 6 @Copyright 2010 . 1 − q m −1 m −1 1 q �p. 1/ 2 � 1 − q m −1 1 / 2 � 2 �� 1 − q � �m �� � ...
Tìm kiếm theo từ khóa liên quan:
Đại lượng ngẫu nhiên Véctơ ngẫu nhiên Đặc trưng đại lượng ngẫu nhiên Đặc trưng véctơ ngẫu nhiên Kỳ vọng của hàm Tìm hiểu phương saiTài liệu liên quan:
-
Bài giảng Xác suất thống kê - Chương 6: Kiểm định giả thuyết thống kê (Trường ĐH Thương mại)
58 trang 112 0 0 -
Đề cương chi tiết bài giảng Xác suất thống kê
100 trang 97 0 0 -
Giáo trình Xác suất và thống kê: Phần 1 (Tái bản lần thứ mười)
79 trang 65 0 0 -
Giáo trình Nguyên lý thống kê kinh tế - Ứng dụng trong kinh doanh và kinh tế: Phần 1
187 trang 46 0 0 -
Đề thi kết thúc học phần Xác suất thống kê năm 2020 - Đề số 07 (18/07/2020)
1 trang 44 0 0 -
Giáo trình Lý thuyết xác suất và thống kê toán: Phần 1 - Trường ĐH Kinh tế Nghệ An
77 trang 43 0 0 -
Xác suất và thống kê toán: Hướng dẫn giải bài tập - Phần 1
106 trang 35 0 0 -
Giáo trình Xác suất thống kê A
0 trang 34 0 0 -
Giáo trình Toán ứng dụng trong tin học
273 trang 33 0 0 -
Giáo trình Xác suất thống kê: Phần 1
59 trang 32 0 0