Danh mục

Bài giảng chuyên đề Phương pháp tính Phần 1

Số trang: 13      Loại file: pdf      Dung lượng: 227.10 KB      Lượt xem: 13      Lượt tải: 0    
Thư viện của tui

Phí lưu trữ khi tải xuống: 5,000 VND Tải xuống file đầy đủ (13 trang) 0
Xem trước 2 trang đầu tiên của tài liệu này:

Thông tin tài liệu:

Câu hỏi:1. Nêu ý nghia vật lý và trình bày công thức tính của các toán tử Haminton (GradU, DivA,RotA)? Sử ích lợi của nó ?.2. Hãy nêu những ưu nhược điểm của phép tính toán tử so với phép tính tensor ?3. Hãy nêu vài ứng dụng của công thức Stockes và công thức Oxtrograski – Gauss ?4. Hãy nêu vài ứng dụng của các phép biến đổi (Laplace, biến hình bảo giác, Sigma) ?
Nội dung trích xuất từ tài liệu:
Bài giảng chuyên đề Phương pháp tính Phần 1 Prof. NGUY N TH HÙNGPHƯƠNG PHÁPTÍNHNUMERICAL METHODS FOR ENGINEERS *********** DANANG UNIVERSITY OF TECHNOLOGY Danang 2000 M CL CChương 0: Ph n b túc A. Phép tính vec tơ 1 B. Phép tính Tensor 3 C. Các phương pháp bi n i 5 1. Phép bi n i t a 5 2. Phép bi n hình b o giác 5 3. Phép bi n i LapLace 6 4. Phép bi n i sigma 6 D. M t vài ng d ng c a gi i tích hàm 7 1. Không gian Mêtrix 7 2. Không gian tuy n tính nh chu n 7 3. Không gian EUCLIC- Không gian HILBERT 7Chương 1: Sai s 10 1.1 Sai s tuy t i 9 1.2 Sai s tương i 9 1.3 Cách vi t s x p x 9 1.4 Sai s quy tròn 9 1.5 Sai s c a s ã quy tròn 9 1.6 nh hư ng c a sai s quy tròn 9 1.7 Các quy t c tính sai s 10 1.8 Sai s tính toán và sai s phương pháp 10 1.9 S n nh c a quá trình tính 10Chương 2: N i suy 14 2.1 a th c n i suy Lagrăng 13 2.2 N i suy Newton 13 2.3 N i suy Spline 15 2.4 Phương pháp bình phương c c ti u 17Chương 3: Tính g n úng o hàm và tích phân 22 3.1 Tính g n úng o hàm 22 3.2 Tính g n úng tích phân xác nh 22 3.2.1 Công th c hình thang 22 3.2.2 Công th c Simpson 24 3.2.3 Công th c c a Gauss 25 3.2.3.1 Liên h gi a các h t a t ng th và h t a a phương 25 3.2.3.2 Tích phân s 27Chương 4: Gi i g n úng phương trình và h phương trình phi tuy n 32 4.1 Gi i g n úng phương trình 32 4.1.1 Phương pháp dây cung 32 4.1.2 Phương pháp Newton-Raphson 33 4.2 Gi i h phương trình phi tuy n 34Chương 5: Các phương pháp s c a i s tuy n tính 38 5.1 Ma tr n 38 5.1.1 Các nh nghĩa 38 5.1.2 Phép bi n i tuy n tính trong không gian n chi u 38 5.1.3 Các phép tính ma tr n 40 5.1.4 Véc tơ riêng, tr riêng và các d ng toàn phương c a ma tr n 41 5.2 Gi i h i tuy n 42 5.2.1 Phân tích LU và phân tích Cholesky 42 5.2.2 Phương pháp l p ơn h phương trình 43 5.2.3 Phương pháp l p Seiden 44 5.2.4 Phương pháp Gradient liên h p 45Chương 6: Nghi m g n úng c a h phương trình vi phân thư ng 48 6.1 M u 48 6.2 Nghi m g n úng c a bài toán Cauchy i v i phương trình vi phân thư ng 48 6.2.1 Phương pháp x p x liên ti p Pica 49 6.2.2 Phương pháp Euler 50 6.2.3 Phương pháp Runghe-Kutta b c 4 51 6.2.4 Phương pháp Adam 52Chương 7: Gi i g n úng phương trình o hàm riêng b ng phương pháp s 58 7.1 Phân lo i phương trình o hàm riêng b c 2 tuy n tính 58 7.2 Các bài toán biên thư ng g p 59 7.3 Tư tư ng cơ b n c a các phương pháp g n úng 59 7.4 Phương pháp c trưng 60 7.5 Phương pháp sai phân 61 7.5.1 Tính nh t quán c a lư c sai phân 64 7.5.2 S n nh c a lư c 64 7.5.3 Các ng d ng trong cơ h c 65 7.6 Phương pháp ph n t h u h n 66 7.6.1 Phương pháp bi n phân Reyleigh-Ritz 66 7.6.2 Phương pháp bi n phân Galerkin ...

Tài liệu được xem nhiều:

Tài liệu liên quan: