Bài giảng Lý thuyết xác suất và thống kê toán học: Chương 6 - Phan Văn Tân
Số trang: 23
Loại file: pdf
Dung lượng: 342.83 KB
Lượt xem: 12
Lượt tải: 0
Xem trước 3 trang đầu tiên của tài liệu này:
Thông tin tài liệu:
Bài giảng "Lý thuyết xác suất và thống kê toán học - Chương 6: Lý thuyết ước lượng" cung cấp cho người học các kiến thức: Hàm ướ lượng của một tham số chưa biết, ước lượng tham số theo phương pháp hợp lý cực đại,... Mời các bạn cùng tham khảo nội dung chi tiết.
Nội dung trích xuất từ tài liệu:
Bài giảng Lý thuyết xác suất và thống kê toán học: Chương 6 - Phan Văn Tân LÝ THUYẾTXÁC SUẤT VÀ THỐNG KÊ TOÁN HỌC Phan Văn Tân Bộ mô Khí tượng CHƯƠNG 6. LÝ THUYẾT ƯỚC LƯỢNG6.1 Hàm ước lượng của một tham số chưa biết• Bài toán: Cho X là đại lượng ngẫu nhiên có phân bố F(x,θ) (hoặc f(x,θ)), dạng của F(x,θ) đã biết nhưng chưa biết θ. Hãy xác định θ• Thực tế, rất khó hoặc không thể xác định chính xác giá trị θ nên người ta chỉ ước lượng nó thông qua tập mẫu của X• Giả sử có mẫu (X1, X2,…, Xn) của X, để thay thế cho θ ta lập đại lượng thống kê θˆ( X 1 , X 2 ,..., X n )• Định nghĩa: Đại lượng thống kê θˆ( X 1 , X 2 ,..., X n ) được chọn dùng để thay thế cho tham số θ được gọi là hàm ước lượng của θ (hay ngắn gọn hơn là ước lượng của θ)• Chú ý:θˆ( X 1 , X 2 ,..., X n ) là hàm của (X1,..,Xn) Î biến ngẫu nhiên• Với mỗi (x1,…,xn) thì θˆ( X 1 , X 2 ,..., X n ) là một điểm trên trục số ⇒ θˆ( X 1 , X 2 ,..., X n ) còn gọi là ước lượng điểm của θ CHƯƠNG 6. LÝ THUYẾT ƯỚC LƯỢNG6.1 Hàm ước lượng của một tham số chưa biết• Ví dụ: Xét đại lượng ngẫu nhiên X với mẫu (X1, X2,…, Xn)• Khi đó: mx = M [ X ], Dx ≡ σ x2 = D[ X ] = M [( X − mx ) 2 ] là các đặc trưng chính xác (các tham số chính xác) của X 1 n X = ∑ X i là một ước lượng mx n i =1 ~ 1 n Dx ≡ s x = ∑ ( X i − X ) 2 là một ước lượng của Dx 2 n i =1• Nói chung, ứng với một tham số θ có thể có nhiều cách ước lượng khác nhau Î Cần chọn ước lượng nào tốt nhất CHƯƠNG 6. LÝ THUYẾT ƯỚC LƯỢNG6.1 Hàm ước lượng của một tham số chưa biết• Định nghĩa: Hàm ước lượng θˆ( X 1 ,..., X n ) của tham số θ được gọi là ước lượng không chệch nếu: M [θˆ( X 1 ,..., X n )] = θ• Ví dụ: Kỳ vọng mẫu là ước lượng không chệch của kỳ vọng mx 1 n 1 n 1 n M [ X ] = M [ ∑ X i ] = M [∑ X i ] = ∑ M [ X i ] = M [ X ] = mx n i =1 n i =1 n i =1• Phương sai mẫu là ước lượng chệch của phương sai Dx ~ 1 n 1 n M [ Dx ] ≡ M [ s x ] = M [ ∑ ( X i − X ) ] = M [ ∑ ( X i − X ) 2 ] 2 2 n i =1 n i =1 Vì Xi nhận các giá trị của X và có cùng phân bố với X nên M[Xi ] = M[X ] = M[X ] CHƯƠNG 6. LÝ THUYẾT ƯỚC LƯỢNG 6.1 Hàm ước lượng của một tham số chưa biết ~ 1 ⎡n ( 2⎤ ⇒ M [ Dx ] = M ⎢∑ ( X i − M [ X i ]) − ( X − M [ X ]) ⎥ = n ⎣ i =1 ) ⎦ 1 ⎡ ( ⎤ ) n= M ⎢∑ ( X i − M [ X ]) + ( X − M [ X ]) − 2( X i − M [ X ])( X − M [ X ]) ⎥ = 2 2 n ⎣ i =1 n n ⎦ 1 n n i =1 [= ∑ M ( X i − M [ X ]) 2 ] = 1 ∑ n i =1 D xi = 1 ∑ n i =1 Dx = Dx 1 n 1+ M [∑ ( X − M [ X ]) ] = M [n ( X − M [ X ]) 2 ] = M [( X − M [ X ]) 2 ] = D[ X ] 2 n i =1 n n 2 n 2− M [∑ ( X i − M [ X ])( X − M [ X ])] = − M [( X − M [ X ]) ∑ ( X i − M [ X i ])] = n i =1 n i =1 2 ~ = − M [( X − M [ X ])n( X − M [ X ])] = ⇒ M [ Dx ] = Dx − D[ X ] n = −2 M [( X − M [ X ]) 2 ] = −2 D[ X ] CHƯƠNG 6. LÝ THUYẾT ƯỚC LƯỢNG6.1 Hàm ước lượng của một tham số chưa biết ~ 1 ⎡n ( ) 2⎤ ⇒ M [ Dx ] = M ⎢∑ ( X i − M [ X i ]) − ( X − M [ X ]) ⎥ = n ⎣ i =1 ⎦ ~ M [ Dx ] = Dx − D[ X ] ⎡1 n ⎤ 1 ⎡n ⎤ D[ X ] = D ⎢ ∑ X i ⎥ = 2 D ⎢∑ X i ⎥ ⎣ n i =1 ⎦ n ⎣ i =1 ...
Nội dung trích xuất từ tài liệu:
Bài giảng Lý thuyết xác suất và thống kê toán học: Chương 6 - Phan Văn Tân LÝ THUYẾTXÁC SUẤT VÀ THỐNG KÊ TOÁN HỌC Phan Văn Tân Bộ mô Khí tượng CHƯƠNG 6. LÝ THUYẾT ƯỚC LƯỢNG6.1 Hàm ước lượng của một tham số chưa biết• Bài toán: Cho X là đại lượng ngẫu nhiên có phân bố F(x,θ) (hoặc f(x,θ)), dạng của F(x,θ) đã biết nhưng chưa biết θ. Hãy xác định θ• Thực tế, rất khó hoặc không thể xác định chính xác giá trị θ nên người ta chỉ ước lượng nó thông qua tập mẫu của X• Giả sử có mẫu (X1, X2,…, Xn) của X, để thay thế cho θ ta lập đại lượng thống kê θˆ( X 1 , X 2 ,..., X n )• Định nghĩa: Đại lượng thống kê θˆ( X 1 , X 2 ,..., X n ) được chọn dùng để thay thế cho tham số θ được gọi là hàm ước lượng của θ (hay ngắn gọn hơn là ước lượng của θ)• Chú ý:θˆ( X 1 , X 2 ,..., X n ) là hàm của (X1,..,Xn) Î biến ngẫu nhiên• Với mỗi (x1,…,xn) thì θˆ( X 1 , X 2 ,..., X n ) là một điểm trên trục số ⇒ θˆ( X 1 , X 2 ,..., X n ) còn gọi là ước lượng điểm của θ CHƯƠNG 6. LÝ THUYẾT ƯỚC LƯỢNG6.1 Hàm ước lượng của một tham số chưa biết• Ví dụ: Xét đại lượng ngẫu nhiên X với mẫu (X1, X2,…, Xn)• Khi đó: mx = M [ X ], Dx ≡ σ x2 = D[ X ] = M [( X − mx ) 2 ] là các đặc trưng chính xác (các tham số chính xác) của X 1 n X = ∑ X i là một ước lượng mx n i =1 ~ 1 n Dx ≡ s x = ∑ ( X i − X ) 2 là một ước lượng của Dx 2 n i =1• Nói chung, ứng với một tham số θ có thể có nhiều cách ước lượng khác nhau Î Cần chọn ước lượng nào tốt nhất CHƯƠNG 6. LÝ THUYẾT ƯỚC LƯỢNG6.1 Hàm ước lượng của một tham số chưa biết• Định nghĩa: Hàm ước lượng θˆ( X 1 ,..., X n ) của tham số θ được gọi là ước lượng không chệch nếu: M [θˆ( X 1 ,..., X n )] = θ• Ví dụ: Kỳ vọng mẫu là ước lượng không chệch của kỳ vọng mx 1 n 1 n 1 n M [ X ] = M [ ∑ X i ] = M [∑ X i ] = ∑ M [ X i ] = M [ X ] = mx n i =1 n i =1 n i =1• Phương sai mẫu là ước lượng chệch của phương sai Dx ~ 1 n 1 n M [ Dx ] ≡ M [ s x ] = M [ ∑ ( X i − X ) ] = M [ ∑ ( X i − X ) 2 ] 2 2 n i =1 n i =1 Vì Xi nhận các giá trị của X và có cùng phân bố với X nên M[Xi ] = M[X ] = M[X ] CHƯƠNG 6. LÝ THUYẾT ƯỚC LƯỢNG 6.1 Hàm ước lượng của một tham số chưa biết ~ 1 ⎡n ( 2⎤ ⇒ M [ Dx ] = M ⎢∑ ( X i − M [ X i ]) − ( X − M [ X ]) ⎥ = n ⎣ i =1 ) ⎦ 1 ⎡ ( ⎤ ) n= M ⎢∑ ( X i − M [ X ]) + ( X − M [ X ]) − 2( X i − M [ X ])( X − M [ X ]) ⎥ = 2 2 n ⎣ i =1 n n ⎦ 1 n n i =1 [= ∑ M ( X i − M [ X ]) 2 ] = 1 ∑ n i =1 D xi = 1 ∑ n i =1 Dx = Dx 1 n 1+ M [∑ ( X − M [ X ]) ] = M [n ( X − M [ X ]) 2 ] = M [( X − M [ X ]) 2 ] = D[ X ] 2 n i =1 n n 2 n 2− M [∑ ( X i − M [ X ])( X − M [ X ])] = − M [( X − M [ X ]) ∑ ( X i − M [ X i ])] = n i =1 n i =1 2 ~ = − M [( X − M [ X ])n( X − M [ X ])] = ⇒ M [ Dx ] = Dx − D[ X ] n = −2 M [( X − M [ X ]) 2 ] = −2 D[ X ] CHƯƠNG 6. LÝ THUYẾT ƯỚC LƯỢNG6.1 Hàm ước lượng của một tham số chưa biết ~ 1 ⎡n ( ) 2⎤ ⇒ M [ Dx ] = M ⎢∑ ( X i − M [ X i ]) − ( X − M [ X ]) ⎥ = n ⎣ i =1 ⎦ ~ M [ Dx ] = Dx − D[ X ] ⎡1 n ⎤ 1 ⎡n ⎤ D[ X ] = D ⎢ ∑ X i ⎥ = 2 D ⎢∑ X i ⎥ ⎣ n i =1 ⎦ n ⎣ i =1 ...
Tìm kiếm theo từ khóa liên quan:
Bài giảng Lý thuyết xác suất Lý thuyết xác suất Thống kê toán học Xác suất thống kê Lý thuyết ước lượng Ước lượng tham sốTài liệu liên quan:
-
Giáo trình Xác suất thống kê: Phần 1 - Trường Đại học Nông Lâm
70 trang 335 5 0 -
19 trang 263 0 0
-
Giáo trình Thống kê xã hội học (Xác suất thống kê B - In lần thứ 5): Phần 2
112 trang 210 0 0 -
Đề cương chi tiết học phần: Xác suất thống kê
3 trang 201 0 0 -
Bài giảng Xác suất và thống kê trong y dược - Chương 1: Khái niệm cơ bản của lý thuyết xác suất
69 trang 188 0 0 -
116 trang 177 0 0
-
Bài giảng Xác suất thống kê và quy hoạch thực nghiệm: Chương 3.4 và 3.5 - Nguyễn Thị Thanh Hiền
26 trang 175 0 0 -
Giáo trình Xác suất thống kê (tái bản lần thứ năm): Phần 2
131 trang 165 0 0 -
Bài giảng Xác suất thống kê và quy hoạch thực nghiệm: Chương 5.2 - Nguyễn Thị Thanh Hiền
27 trang 147 0 0 -
Một số ứng dụng của xác suất thống kê
5 trang 147 0 0