Bài giảng Xử lý số tín hiệu - Chương 5: Tìm hiểu biến đổi Z
Số trang: 22
Loại file: ppt
Dung lượng: 784.00 KB
Lượt xem: 20
Lượt tải: 0
Xem trước 3 trang đầu tiên của tài liệu này:
Thông tin tài liệu:
Bài giảng cung cấp cho người học các kiến thức: Biến đổi Z, tính chất cơ bản, miền hội tụ, tính nhân quả và ổn định, phổ tần số,... Hi vọng đây sẽ là một tài liệu hữu ích dành cho các bạn sinh viên đang theo học môn dùng làm tài liệu học tập và nghiên cứu. Mời các bạn cùng tham khảo chi tiết nội dung tài liệu.
Nội dung trích xuất từ tài liệu:
Bài giảng Xử lý số tín hiệu - Chương 5: Tìm hiểu biến đổi Z Xử lý số tín hiệu Chương 5: Biến đổi Z 1. Định nghĩa Biến đổi Z của tín hiệu rời rạc thời gian x(n): n X ( z) x( n) z n ... x( 2) z 2 x( 1) z x(0) x(1) z 1 x(2) z 2 ... Hàm truyền của bộ lọc có đáp ứng xung h(n) n H ( z) h( n) z n 2. Các tính chất cơ bản a. Tính tuyến tính Z A1 x1 (n) A2 x2 (n) A1 X 1 ( z ) A2 X 2 ( z ) b. Tính trễ Z Z D xn X z x n D z X ( z) c. Tính chập y (n) h(n) x(n) Y (z) X(z)H(z) 2. Các tính chất cơ bản Ví dụ 1 Dùng u (n) u (n 1) (n) và tính chất của biến đổi Z, xác định biến đổi Z của: a) x(n) = u(n) b) x(n) = -u(-n-1) Ví dụ 2 Dùng biến đổi Z tính tích chập của bộ lọc và tín hiệu ngõ vào sau: h = [1, 2, -1, 1] x = [1, 1, 2, 1, 2, 2, 1, 1] 3. Miền hội tụ Miền hội tụ (Region of convergence – ROC) của X(z): ROC z C X (z ) Ví dụ 1: x(n) = (0.5)nu(n) Biến đổi Z: z-plane X ( z) (0.5) n u (n) z n (0.5 z 1 ) n n n 0 z Tổng hội tụ khi 0. ROC |z| 5 1 0.5 z 1 z 0.5 ROC z C z 0. 5 n Z 1 (0.5) u n 1 , z 0.5 1 0.5 z 3. Miền hội tụ Ví dụ 2: x(n) = -(0.5)nu(-n -1) Biến đổi Z: 1 X ( z) (0.5) n z n [(0.5) 1 z ]m n m 1 ROC z C z 0.5 z-plane z 0. Kết quả: |z| 5 n Z 1 ROC (0.5) u ( n 1) 1 , z 0.5 1 0.5 z 3. Miền hội tụ n Z 1 Tổng quát: a u (n) 1 , z a 1 az Z 1 a nu ( n 1) 1 , z a 1 az z-plane z-plane a a |z |z| ROC |a| |a| | cực cực ROC 4. Tính nhân quả và ổn định Tín hiệu nhân quả dạng: n n x ( n) A p u (n) A2 p u (n) ... 1 1 2 có biến đổi Z là: A1 A2 X ( z) 1 1 ... 1 p1 z 1 p2 z Với ROC: z max pi i p4 p1 p2 p3 ROC 4. Tính nhân quả và ổn định Tín hiệu phản nhân quả dạng: n n x ( n) A p u ( n 1) A2 p u ( n 1) ... 1 1 2 cũng có biến đổi Z là: A1 A2 X ( z) 1 1 ... 1 p1 z 1 p2 z Với ROC: z min pi i p4 p1 p2 p3 ROC 4. Tính nhân quả và ổn định Ví dụ Xác định biến đổi z và miền hội tụ của a. x(n) = (0.8)nu(n) + (1.25)nu(n) b. x(n) = (0.8)nu(n) – (1.25)nu(-n – 1 ) c. x(n) = – (0.8)nu(-n-1) + (1.25)nu(n) d. x(n) = – (0.8)nu(- n – 1) – (1.25)nu(-n – 1) 4. Tính nhân quả và ổn định x(n) ổn định ROC có chứa vòng tròn đơn vị Các trường hợp: p4 p4 p1 p2 p1 p2 p3 p3 ...
Nội dung trích xuất từ tài liệu:
Bài giảng Xử lý số tín hiệu - Chương 5: Tìm hiểu biến đổi Z Xử lý số tín hiệu Chương 5: Biến đổi Z 1. Định nghĩa Biến đổi Z của tín hiệu rời rạc thời gian x(n): n X ( z) x( n) z n ... x( 2) z 2 x( 1) z x(0) x(1) z 1 x(2) z 2 ... Hàm truyền của bộ lọc có đáp ứng xung h(n) n H ( z) h( n) z n 2. Các tính chất cơ bản a. Tính tuyến tính Z A1 x1 (n) A2 x2 (n) A1 X 1 ( z ) A2 X 2 ( z ) b. Tính trễ Z Z D xn X z x n D z X ( z) c. Tính chập y (n) h(n) x(n) Y (z) X(z)H(z) 2. Các tính chất cơ bản Ví dụ 1 Dùng u (n) u (n 1) (n) và tính chất của biến đổi Z, xác định biến đổi Z của: a) x(n) = u(n) b) x(n) = -u(-n-1) Ví dụ 2 Dùng biến đổi Z tính tích chập của bộ lọc và tín hiệu ngõ vào sau: h = [1, 2, -1, 1] x = [1, 1, 2, 1, 2, 2, 1, 1] 3. Miền hội tụ Miền hội tụ (Region of convergence – ROC) của X(z): ROC z C X (z ) Ví dụ 1: x(n) = (0.5)nu(n) Biến đổi Z: z-plane X ( z) (0.5) n u (n) z n (0.5 z 1 ) n n n 0 z Tổng hội tụ khi 0. ROC |z| 5 1 0.5 z 1 z 0.5 ROC z C z 0. 5 n Z 1 (0.5) u n 1 , z 0.5 1 0.5 z 3. Miền hội tụ Ví dụ 2: x(n) = -(0.5)nu(-n -1) Biến đổi Z: 1 X ( z) (0.5) n z n [(0.5) 1 z ]m n m 1 ROC z C z 0.5 z-plane z 0. Kết quả: |z| 5 n Z 1 ROC (0.5) u ( n 1) 1 , z 0.5 1 0.5 z 3. Miền hội tụ n Z 1 Tổng quát: a u (n) 1 , z a 1 az Z 1 a nu ( n 1) 1 , z a 1 az z-plane z-plane a a |z |z| ROC |a| |a| | cực cực ROC 4. Tính nhân quả và ổn định Tín hiệu nhân quả dạng: n n x ( n) A p u (n) A2 p u (n) ... 1 1 2 có biến đổi Z là: A1 A2 X ( z) 1 1 ... 1 p1 z 1 p2 z Với ROC: z max pi i p4 p1 p2 p3 ROC 4. Tính nhân quả và ổn định Tín hiệu phản nhân quả dạng: n n x ( n) A p u ( n 1) A2 p u ( n 1) ... 1 1 2 cũng có biến đổi Z là: A1 A2 X ( z) 1 1 ... 1 p1 z 1 p2 z Với ROC: z min pi i p4 p1 p2 p3 ROC 4. Tính nhân quả và ổn định Ví dụ Xác định biến đổi z và miền hội tụ của a. x(n) = (0.8)nu(n) + (1.25)nu(n) b. x(n) = (0.8)nu(n) – (1.25)nu(-n – 1 ) c. x(n) = – (0.8)nu(-n-1) + (1.25)nu(n) d. x(n) = – (0.8)nu(- n – 1) – (1.25)nu(-n – 1) 4. Tính nhân quả và ổn định x(n) ổn định ROC có chứa vòng tròn đơn vị Các trường hợp: p4 p4 p1 p2 p1 p2 p3 p3 ...
Tìm kiếm theo từ khóa liên quan:
Bài giảng Xử lý số tín hiệu Xử lý số tín hiệu Biến đổi Z Tính chất cơ bản Miền hội tụ Tính nhân quả và ổn định Phổ tần sốGợi ý tài liệu liên quan:
-
Giáo trình Xử lý số tín hiệu - PGS.TS. Nguyễn Quốc Trung (chủ biên)
153 trang 171 0 0 -
Giáo trình Xử lý số tín hiệu (Digital signal processing): Phần 1
95 trang 66 1 0 -
Giáo trình Xử lý tín hiệu số: Phần 2 - Đại học Thủy Lợi
179 trang 55 0 0 -
Bài giảng Xử lý số tín hiệu: Chương 3 - ĐH Sài Gòn
36 trang 33 0 0 -
Bài giảng Xử lý số tín hiệu - Chương 7: Thiết kế bộ lọc số FIR
29 trang 32 0 0 -
Bài giảng Xử lý tín hiệu số và ứng dụng - Chương 1: Khái niệm chung
28 trang 30 0 0 -
Giáo trình xử lý số tín hiệu part 1
16 trang 30 0 0 -
Bài giảng Xử lý số tín hiệu: Giới thiệu môn học - TS. Chế Viết Nhật Anh
10 trang 30 0 0 -
Bài giảng Xử lý số tín hiệu: Chương 4 - PGS.TS Lê Tiến Thường
69 trang 28 0 0 -
Bài giảng Xử lý số tín hiệu: Chương 2 - PGS.TS Lê Tiến Thường
37 trang 27 0 0