Danh mục

Bài tập lớn môn Phương pháp tính - Th.S Trịnh Quốc Lương

Số trang: 22      Loại file: ppt      Dung lượng: 369.50 KB      Lượt xem: 15      Lượt tải: 0    
Thư viện của tui

Phí tải xuống: 13,000 VND Tải xuống file đầy đủ (22 trang) 0
Xem trước 3 trang đầu tiên của tài liệu này:

Thông tin tài liệu:

Bài tập lớn môn Phương pháp tính - Th.S Trịnh Quốc Lương có nội dưng đưa ra các bài tập thực hành giúp sinh viên ôn tập, hệ thống kiến thức cũng như viết chương trình chính ứng dụng các hàm để giải toàn bộ bài toán, ứng dụng giải các ví dụ và bài tập trong giáo trình... Mời các bạn cùng tham khảo.
Nội dung trích xuất từ tài liệu:
Bài tập lớn môn Phương pháp tính - Th.S Trịnh Quốc Lương BÀI TẬP LỚN MÔN PHƯƠNG PHÁP TÍNH GVC­Th.s : TRỊNH QUỐC LƯƠNG Yêu cầu chung :   Các yêu câu được viết theo từng hàm  Hàm giải cho kết quả bài toán đồng thời  hiển thị các bước trung gian  Các hàm đều phải có chú thích   Viết chương trình chính ứng dụng các  hàm để giải toàn bộ bài toán  Ứng dụng giải các ví dụ và bài tập trong  giáo trình 1. Lập trình giải gần đúng phương trình phi tuyến f(x) = 0 với f là hàm liên tục trên khoảng [a,b] bằng phương  pháp chia đôi  Viết hàm xác định tất cả các khoảng cách ly nghiêm  Viết hàm kiểm tra khoảng cách ly nghiệm  Viết hàm tìm nghiệm xn với n cho trước và tính sai  số tương ứng  Viết hàm tìm nghiệm với sai số ε cho trước 2.  Lập trình giải gần đúng phương trình phi tuyến x=g(x) với g là hàm liên tục trên khoảng [a,b] bằng  phương pháp lặp đơn  Viết hàm kiểm tra điều kiện hội tụ   Viết hàm tìm nghiệm xn với n cho trước và tính  sai số tương ứng  Viết hàm tìm nghiệm với sai số ε cho trước  Dùng công thức tiên nghiệm  Dùng công thức hậu nghiệm  3.  Lập trình giải gần đúng phương trình phi tuyến f(x)=0 với f là hàm liên tục trên khoảng [a,b] bằng phương  pháp lặp Newton  Viết hàm kiểm tra điều kiện hội tụ   Viết hàm tìm nghiệm xn với n cho trước và tính  sai số tương ứng bằng công thức sai số tổng quát  Viết hàm tìm nghiệm với sai số ε cho trước  4. Lập trình giải hệ phương trình tuyến tính Ax=b Bằng phương pháp Cholesky với A là ma trận vuông  cấp n  Viết hàm kiểm tra tính đối xứng  Viết hàm kiểm tra tính xác định dương  Viết hàm kiểm tra tính ổn định của hệ phương trình  Viết hàm giải hệ pt tam giác trên  Viết hàm giải hệ pt tam giác dưới  Viết hàm Phân tích A=BBT  Viết hàm giải hệ Ax=b theo Cholesky 5. Lập trình giải gần đúng hệ pt tuyến tính Ax=b bằng pp Jacobi với A là ma trận vuông cấp n  Viết hàm tính chuẩn ma trận  Viết hàm kiểm tra điều kiện hội tụ  Viết hàm tính nghiệm xnvới n cho trước và tính sai  số  Viết hàm tìm nghiệm với sai số ε cho trước  Dùng công thức tiên nghiệm  Dùng công thức hậu nghiệm 6. Lập trình giải gần đúng hệ pt tuyến tính Ax=b bằng pp Gauss­Seidel với A là ma trận vuông cấp n  Viết hàm tính chuẩn ma trận  Viết hàm kiểm tra điều kiện hội tụ  Viết hàm tính nghiệm xnvới n cho trước và tính sai  số  Viết hàm tìm nghiệm với sai số ε cho trước  Dùng công thức tiên nghiệm  Dùng công thức hậu nghiệm 7.  Cho hàm f và bảng số x   xo      x1       x2        . . .       xn    y   yo      y1       y2        . . .       yn Lập trình tình gần đúng giá trị của f(x) bằng đa thức  nội suy Lagrange  Viết hàm tính đa thức nội suy Lagrange  Viết hàm tính gần đúng f(x) cho TH các điểm nút  cách đều  Viết hàm tính gần đúng f(x) cho TH các điểm nút  không cách đều  Viết hàm tính sai số  8.  Cho hàm f và bảng số x   xo      x1       x2        . . .       xn    y   yo      y1       y2        . . .       yn Lập trình tình gần đúng giá trị của f(x) bằng đa thức  nội suy Newton tiến  Viết hàm tính các tỉ sai phân và sai phân hữu hạn  Viết hàm tính gần đúng f(x) cho TH các điểm nút  cách đều  Viết hàm tính gần đúng f(x) cho TH các điểm nút  không cách đều  Viết hàm tính sai số  9.  Cho hàm f và bảng số x   xo      x1       x2        . . .       xn    y   yo      y1       y2        . . .       yn Lập trình tình gần đúng giá trị của f(x) bằng đa thức  nội suy Newton lùi  Viết hàm tính các tỉ sai phân và sai phân hữu hạn  Viết hàm tính gần đúng f(x) cho TH các điểm nút  cách đều  Viết hàm tính gần đúng f(x) cho TH các điểm nút  không cách đều  Viết hàm tính sai số  10. Cho hàm f và bảng số x   xo      x1       x2        . . .       xn    y   yo      y1       y2        . . .       yn Lập trình xây dựng Spline tự nhiên nội suy hàm f  Viết hàm tính các hệ số ak, bk, ck, dk  Viết hàm xây dựng Spline tự nhiên  Viết hàm nhập trị x, tính gần đúng f(x) 11. Cho hàm f và bảng số x   xo      x1       x2        . . .       xn    y   yo      y1       y2        . . .       yn Lập trình xây dựng Spline ràng buộc nội suy hàm f   Viết hàm tính các hệ số ak, bk, ck, dk  Viết hàm xây dựng Spline ràng buộc  Viết hàm nhập trị x, tính gần đúng f(x) 12. Cho bảng số x   xo      x1       x2        . . .       xn    y ả  y Lập trình gi o      y1       yấ i bài toán x 2        . . .       y p xỉ thực nghi n ệm tìm hàm f  xấp xỉ bảng số theo pp bình phương cực tiểu cho lơp  hàm f(x) = Af1(x)+Bf2(x)  Viết hàm tìm hàm f(x) xấp xỉ bảng số theo pp  BPCT  Viết hàm tính gần đúng f(x) 13. Cho bảng số x   xo      x1       x2        . . .       xn    y   yo      y1       y2        . . .       yn Lập trình giải bài toán xấp xỉ thực nghiệm tìm hàm f  xấp xỉ bảng số theo pp bình phương cực tiểu ...

Tài liệu được xem nhiều: