Thông tin tài liệu:
Từ đặc tính xung h(n) có thể tìm được phản ứng y(n) của hệ xử lý số TTBBNQ, phân tích các hệ xử lý sốphức tạp, xây dựng sơ đồ khối và sơ đồ cấu trúc, cũng như xét tính ổn định của hệ xử lý số TTBBNQ.
Nội dung trích xuất từ tài liệu:
Biến xung Do đó phản ứng y(n) của hệ xử lý số TTBBNQ theo các biểu thức tích chập [1.5-7] và [1.5-8] sẽ là : ∞ ∑ x ( k ) h ( n − k ) = x ( n) * h( n ) y ( n) = [1.5-18] k =0 ∞ ∑ h( k ) x ( n − k ) = h( n) * x( n) y ( n) =Và : [1.5-19] k =0Như vậy, phản ứng y(n) của hệ xử lý số TTBBNQ cũng là dãy nhân quả. Theo độ dài của đặc tính xung h(n), người ta phân biệt hai loại hệ xử lý số : - Hệ xử lý số có đặc tính xung h(n) hữu hạn, được viết tắt theo tiếng Anh là hệ FIR (Finite-DurationImpulse Response). - Hệ xử lý số có đặc tính xung h(n) vô hạn, được viết tắt theo tiếng Anh là hệ IIR (Infinite-DurationImpulse Response). phân tích hệ xử lý số Tuyến Tính Bất Biến 1.6 Nhân Quả theo đặc tính xung h(n) Từ đặc tính xung h(n) có thể tìm được phản ứng y(n) của hệ xử lý số TTBBNQ, phân tích các hệ xử lý sốphức tạp, xây dựng sơ đồ khối và sơ đồ cấu trúc, cũng như xét tính ổn định của hệ xử lý số TTBBNQ.1.6.1 Tìm phản ứng y(n) của hệ xử lý số TTBBNQ Theo các biểu thức tích chập [1.5-18] hoặc [1.5-19] có thể tìm được phản ứng y(n) của hệ xử lý sốTTBBNQ khi biết tác động x(n) và đặc tính xung h(n).1.6.1a Phương pháp giải tích tính tích chập Tính tích chập bằng phương pháp giải tích chỉ thực hiện được nếu x(n) hoặc h(n) có độ dài hữu hạn, vàphải tính từng giá trị của y(n). Xét trường hợp tác động x(n) và đặc tính xung h(n) đều là dãy nhân quả và có độ dài hữu hạn. Giả sửx(n) có độ dài M, và h(n) có độ dài L , khi đó có thể dùng [1.5-18] hoặc [1.5-19]. Nếu sử dụng [1.5-18] thì : ∞ M −1 ∑ ∑ x (k ) h(n − k ) y ( n) = x ( k ) h( n − k ) = [1.6-1] k =0 k =0 Vì y(n) là dãy nhân quả, nên chỉ cần tính từ y(0). Do h(n − k ) = 0 với mọi (n − k ) < 0 và (n − k ) > ( L − 1) ,theo [1.6-1] tính được : M −1 ∑ x(k ).h(−k ) = x(0).h(0) + x(1).h(−1) + ... = x(0).h(0) y ( 0) = k =0 M −1 1 ∑ ∑ x(k ).h(1 − k ) y (1) = x(k ).h(1 − k ) = x(0).h(1) + x(1).h(0) + x(2).h(−1) + ... = k =0 k =0 ........... M −1 ∑ x(k ).h( L − 1 − k ) y ( L − 1) = k =0 M −1 M −1 M −1 ∑ ∑ ∑ x(k ).h( L − k ) y ( L) = x(k ).h( L − k ) = x(0).h( L) + x( k ).h( L − k ) = k =0 k =1 k =1 M −1 M −1 ∑ x(k ).h( L + 1 − k ) = ∑ x(k ).h( L + 1 − k ) y ( L + 1) = k =0 k =2 ........... M −1 M −1 ∑ ∑ x(k ).h( L + M − 3 − k ) y ( L + M − 3) = x(k ).h( L + M − 3 − k ) = k =0 k =M −2 M −1 ∑ x(k ).h( L + M − 2 − k ) = x(M − 1).h( L − 1) y ( L + M − 2) = k =0 M −1 ∑ x(k ).h( L + M − 1 − k ) = x(M − 1).h( L) = 0 y ( L + M − 1) = k =0 y (n) = 0 với mọi n ≥ ( L + M − 1) . Như vậy : Nếu hệ xử lý số TTBBNQ có đặc tính xung h(n) hữu hạn với độ dài L , và tác động x(n)hữu hạn có độ dài M, thì phản ứng y(n) có độ dài hữu hạn N = (L + M – 1). ...