Các bài tập chứng minh tam giác đồng dạng - GV. Nguyễn Thị Thanh
Số trang: 4
Loại file: pdf
Dung lượng: 0.00 B
Lượt xem: 9
Lượt tải: 0
Xem trước 2 trang đầu tiên của tài liệu này:
Thông tin tài liệu:
Các bài tập chứng minh tam giác đồng dạng do GV. Nguyễn Thị Thanh biên soạn giới thiệu tới các bạn một số bài tập về việc chứng minh tam giác đồng dạng một trong những dạng toán Hình học cơ bản ở Trung học cơ sở mà các bạn cần nắm. Mời các bạn tham khảo tài liệu để bổ sung thêm kiến thức về lĩnh vực này.
Nội dung trích xuất từ tài liệu:
Các bài tập chứng minh tam giác đồng dạng - GV. Nguyễn Thị ThanhGV : Nguyeãn Thò Thanh – HHT – Laâm Ñoàng CAÙC BAØI TAÄP CHÖÙNG MINH TAM GIAÙC ÑOÀNG DAÏNG Baøi 1: Cho tam giaùc ABC vuoâng taïi A , ñöôøng cao AH .Chöùng minh : a/ AH.BC = AB.AC b/AB2 = BH.BC c/AH2 = BH.CH d/Goïi M laø trung ñieåm cuûa BH , N laø trung ñieåm cuûa AH .Chöùng minh :CN ⊥ AM .Baøi 2: Cho tam giaùc ABC vuoâng taïi A , ñöôøng cao AH chia caïnh huyeàn thaønh 2 ñoaïn BH = 9cm vaø HC =16cm.Tính AB , AC , BC.Baøi 3:Cho tam giaùc ABC vuoâng taïi A , ñöôøng cao AH , bieát AB = 21cm ; AC = 28cm . a/ Tính AH ? *b/ Keû HD ⊥ AB; HE ⊥ AC .Tính dieän tích tam giaùc AED.Baøi 4: Cho tam giaùc ABC vuoâng taïi A coù AB = 15cm , AC = 20cm .Keû ñöôøng cao AH , trung tuyeán AM. a/ Tính AH ; BC. b/ Tính BH,CH. c/ Tính dieän tích tam giaùc AHM.Baøi 5:Cho ∆ ABC coù ba goùc nhoïn, ñöôøng cao AH ( H ∈ BC ) . Veõ HD vuoâng goùc AB taïi D, HE vuoâng goùcAC taïi E. a) Chöùng minh : ∆ AHB ñoàng daïng vôùi ∆ ADH ; ∆ AHC ñoàng daïng vôùi ∆ AEH . b) Chöùng minh : AD.AB = AE.AC . c) Cho AB = 12 cm, AC = 15 cm, BC = 18 cm. Tính ñoä daøi ñöôøng phaân giaùc AK cuûa ∆ ABC ( K∈ BCBaøi 6:Cho ∆ ABC coù AB = 3 cm, AC = 4 cm, BC = 5 cm. Ñöôøng phaân giaùc goùc A caét caïnh BC taïi D. Qua D veõñöôøng thaúng vuoâng goùc vôùi BC caét AC taïi E vaø BA taïi K. a/ Chöùng minh ∆ ABC vuoâng b/ Tính DB, DC. c/ Chöùng minh ∆ EDC : ∆ BDK d/ Chöùng minh DE = DBBaøi 7 : Cho ∆ ABC vuoâng taïi A, cho bieát AB = 15 cm , AC = 20 cm. Keû ñöôøng cao AH cuûa ∆ ABC. a) Chöùng minh : ∆ AHB ∆ CAB vaø suy ra AB2 = BH.BC b ) Tính ñoä daøi caùc ñoaïn thaúng BH vaø CH . c) Keû HM ⊥ AB vaø HN ⊥ AC. Chöùng minh : AM.AB = AN.AC d) Chöùng minh : ∆ AMN ∆ ACBBaøi 8:Cho tam giaùc ABC vuoâng taïi A. Ñöôøng phaân giaùc cuûa goùc A caét caïnh huyeàn BC taïi D. Qua D keû ñöôøng thaúng vuoâng goùc vôùi BC vaø caét AC taïi E. a) Chöùng minh DEC ñoàng daïng ABC. b) Chöùng minh : DB = DE.Baøi 10 :Cho tam giaùc ABC vuoâng taïi A coù AB = 16cm , BC = 20cm .Keû ñöôøng phaân giaùc BD ( d thuoäc AC) a/ Tính CD vaø AD b/ Töø C keû CH ⊥ BD taïi H . Chöùng minh : ∆ ABD ∆ HCD c/ Tính dieän tích tam giaùc HCD .Baøi 11:Cho ∆ABC nhoïn, trung tuyeán AM. Tia phaân giaùc cuûa goùc AMB caét AB taïi D, Trang 1GV : Nguyeãn Thò Thanh – HHT – Laâm Ñoàng Tia phaân giaùc cuûa goùc AMC caét caïnh AC taïi E. DA EA a/ Chöùng minh = . DB EC b/ Chöùng minh DE // BC .Baøi 12:Cho tam giaùc ABC coù 3 ñöôøng cao AD , BE , CF ñoàng quy taïi H .Chöùng minh :AH.DH = BH.EH = M.FHCho tam giaùc ABC coù 2 ñöôøng cao AD vaø BE .Chöùng minh : a/ ∆ DEC ∆ ABC b/ ∆ ADC ∆ BECBaøi 13:Cho tam giaùc ABC vuoâng taïi A coù AB = 6cm , AC = 8cm .Töø B keû ñöôøng thaêûng // AC ; phaân giaùc goùcBAC caét BC taïi M vaø caét ñöôøng thaêûng a taïi N . a/ CM: ∆ BMN ∆ CMA AB MN b/ CM: = AC AN c/ Töø N keû NE vuoâng goùc vôùi AC ( E thuoäc AC), NE caét BC taïi I .Tính BI.Baøi 14 : ∆ABC coù ñoä daøi caùc caïnh AB = 6cm, AC = 9cm vaø AD laø ñöôøng phaân giaùc. Chöùng minh raèng tæ soá dieän 2tích cuûa ∆ABD vaø ∆ACD baèng 3Baøi 15 : Cho ∆ABC vuoâng taïi A. Keû ñöôøng cao AH. Goïi M, N laàn löôït laø trung ñieåm cuûa BH vaø AH. Chöùngminh : a) ∆ABM ∼ ∆CAN b) AM ⊥ CNBaøi 16:Cho hình chöõ nhaät ABCD , veõ AH ⊥ DB a) Chöùng minh ∆ ABD : ∆ HAD , suy ra AD2 = DH . DB b) Chöùng minh ∆ AHB : ∆ BCD c) Tính ñoä daøi DH , AH , bieát AB = 12 cm, BC = 9 cm d) Tính dieän tích tam giaùc AHBBaøi 17 : Cho hình chöõ nhaät ABCD, coù AB = 8 cm, BC = 6 cm. Töø A keû ñöôøng thaúng vuoâng goùc vôùi BD taïi H vaøcaét CD taïi M. a) Tính ñoä daøi BD. b) Chöùng minh hai tam giaùc AHB vaø MHD ñoàng daïng c) Chöùng minh MD.DC = HD.BD d) Tính dieän tích tam giaùc MDB. ·Baøi 18 Cho xAy , treân tia Ax ñaët caùc ñoaïn thaúng AE = 3cm ; AC = 8cm. Treân tia Ay ñaët caùc ñoaïn thaúng AD =4cm ; AF = 6cm. Goïi I laø giao ñieåm cuûa CD vaø EF. a) Chöùng minh : ∆ ACD ∆ AFE b) Chöùng minh : ∆ IEC ∆ IDFBaøi 19 :Cho ABC coù AB = 4,8 cm; BC = 3,6 cm; CA = 6,4 cm. Treân caïnh AB vaø AC theo thöù töï laáy AD = 3,2 cm vaø AE = 2,4 cm. a) Hai tam giaùc ADE vaø ABC coù ñoàng daïng hay khoâng ? Vì sao? b) Tính ñoä daøi ñoaïn DE.Baøi 20:Cho hình thang ABCD ( AB//CD) .Goïi O laø giao ñieåm 2 ñöôøng cheùo AC vaø BD .Bieát AB = 3cm , OA =2cm , OC = 4cm , OD = 3,6cm. ...
Nội dung trích xuất từ tài liệu:
Các bài tập chứng minh tam giác đồng dạng - GV. Nguyễn Thị ThanhGV : Nguyeãn Thò Thanh – HHT – Laâm Ñoàng CAÙC BAØI TAÄP CHÖÙNG MINH TAM GIAÙC ÑOÀNG DAÏNG Baøi 1: Cho tam giaùc ABC vuoâng taïi A , ñöôøng cao AH .Chöùng minh : a/ AH.BC = AB.AC b/AB2 = BH.BC c/AH2 = BH.CH d/Goïi M laø trung ñieåm cuûa BH , N laø trung ñieåm cuûa AH .Chöùng minh :CN ⊥ AM .Baøi 2: Cho tam giaùc ABC vuoâng taïi A , ñöôøng cao AH chia caïnh huyeàn thaønh 2 ñoaïn BH = 9cm vaø HC =16cm.Tính AB , AC , BC.Baøi 3:Cho tam giaùc ABC vuoâng taïi A , ñöôøng cao AH , bieát AB = 21cm ; AC = 28cm . a/ Tính AH ? *b/ Keû HD ⊥ AB; HE ⊥ AC .Tính dieän tích tam giaùc AED.Baøi 4: Cho tam giaùc ABC vuoâng taïi A coù AB = 15cm , AC = 20cm .Keû ñöôøng cao AH , trung tuyeán AM. a/ Tính AH ; BC. b/ Tính BH,CH. c/ Tính dieän tích tam giaùc AHM.Baøi 5:Cho ∆ ABC coù ba goùc nhoïn, ñöôøng cao AH ( H ∈ BC ) . Veõ HD vuoâng goùc AB taïi D, HE vuoâng goùcAC taïi E. a) Chöùng minh : ∆ AHB ñoàng daïng vôùi ∆ ADH ; ∆ AHC ñoàng daïng vôùi ∆ AEH . b) Chöùng minh : AD.AB = AE.AC . c) Cho AB = 12 cm, AC = 15 cm, BC = 18 cm. Tính ñoä daøi ñöôøng phaân giaùc AK cuûa ∆ ABC ( K∈ BCBaøi 6:Cho ∆ ABC coù AB = 3 cm, AC = 4 cm, BC = 5 cm. Ñöôøng phaân giaùc goùc A caét caïnh BC taïi D. Qua D veõñöôøng thaúng vuoâng goùc vôùi BC caét AC taïi E vaø BA taïi K. a/ Chöùng minh ∆ ABC vuoâng b/ Tính DB, DC. c/ Chöùng minh ∆ EDC : ∆ BDK d/ Chöùng minh DE = DBBaøi 7 : Cho ∆ ABC vuoâng taïi A, cho bieát AB = 15 cm , AC = 20 cm. Keû ñöôøng cao AH cuûa ∆ ABC. a) Chöùng minh : ∆ AHB ∆ CAB vaø suy ra AB2 = BH.BC b ) Tính ñoä daøi caùc ñoaïn thaúng BH vaø CH . c) Keû HM ⊥ AB vaø HN ⊥ AC. Chöùng minh : AM.AB = AN.AC d) Chöùng minh : ∆ AMN ∆ ACBBaøi 8:Cho tam giaùc ABC vuoâng taïi A. Ñöôøng phaân giaùc cuûa goùc A caét caïnh huyeàn BC taïi D. Qua D keû ñöôøng thaúng vuoâng goùc vôùi BC vaø caét AC taïi E. a) Chöùng minh DEC ñoàng daïng ABC. b) Chöùng minh : DB = DE.Baøi 10 :Cho tam giaùc ABC vuoâng taïi A coù AB = 16cm , BC = 20cm .Keû ñöôøng phaân giaùc BD ( d thuoäc AC) a/ Tính CD vaø AD b/ Töø C keû CH ⊥ BD taïi H . Chöùng minh : ∆ ABD ∆ HCD c/ Tính dieän tích tam giaùc HCD .Baøi 11:Cho ∆ABC nhoïn, trung tuyeán AM. Tia phaân giaùc cuûa goùc AMB caét AB taïi D, Trang 1GV : Nguyeãn Thò Thanh – HHT – Laâm Ñoàng Tia phaân giaùc cuûa goùc AMC caét caïnh AC taïi E. DA EA a/ Chöùng minh = . DB EC b/ Chöùng minh DE // BC .Baøi 12:Cho tam giaùc ABC coù 3 ñöôøng cao AD , BE , CF ñoàng quy taïi H .Chöùng minh :AH.DH = BH.EH = M.FHCho tam giaùc ABC coù 2 ñöôøng cao AD vaø BE .Chöùng minh : a/ ∆ DEC ∆ ABC b/ ∆ ADC ∆ BECBaøi 13:Cho tam giaùc ABC vuoâng taïi A coù AB = 6cm , AC = 8cm .Töø B keû ñöôøng thaêûng // AC ; phaân giaùc goùcBAC caét BC taïi M vaø caét ñöôøng thaêûng a taïi N . a/ CM: ∆ BMN ∆ CMA AB MN b/ CM: = AC AN c/ Töø N keû NE vuoâng goùc vôùi AC ( E thuoäc AC), NE caét BC taïi I .Tính BI.Baøi 14 : ∆ABC coù ñoä daøi caùc caïnh AB = 6cm, AC = 9cm vaø AD laø ñöôøng phaân giaùc. Chöùng minh raèng tæ soá dieän 2tích cuûa ∆ABD vaø ∆ACD baèng 3Baøi 15 : Cho ∆ABC vuoâng taïi A. Keû ñöôøng cao AH. Goïi M, N laàn löôït laø trung ñieåm cuûa BH vaø AH. Chöùngminh : a) ∆ABM ∼ ∆CAN b) AM ⊥ CNBaøi 16:Cho hình chöõ nhaät ABCD , veõ AH ⊥ DB a) Chöùng minh ∆ ABD : ∆ HAD , suy ra AD2 = DH . DB b) Chöùng minh ∆ AHB : ∆ BCD c) Tính ñoä daøi DH , AH , bieát AB = 12 cm, BC = 9 cm d) Tính dieän tích tam giaùc AHBBaøi 17 : Cho hình chöõ nhaät ABCD, coù AB = 8 cm, BC = 6 cm. Töø A keû ñöôøng thaúng vuoâng goùc vôùi BD taïi H vaøcaét CD taïi M. a) Tính ñoä daøi BD. b) Chöùng minh hai tam giaùc AHB vaø MHD ñoàng daïng c) Chöùng minh MD.DC = HD.BD d) Tính dieän tích tam giaùc MDB. ·Baøi 18 Cho xAy , treân tia Ax ñaët caùc ñoaïn thaúng AE = 3cm ; AC = 8cm. Treân tia Ay ñaët caùc ñoaïn thaúng AD =4cm ; AF = 6cm. Goïi I laø giao ñieåm cuûa CD vaø EF. a) Chöùng minh : ∆ ACD ∆ AFE b) Chöùng minh : ∆ IEC ∆ IDFBaøi 19 :Cho ABC coù AB = 4,8 cm; BC = 3,6 cm; CA = 6,4 cm. Treân caïnh AB vaø AC theo thöù töï laáy AD = 3,2 cm vaø AE = 2,4 cm. a) Hai tam giaùc ADE vaø ABC coù ñoàng daïng hay khoâng ? Vì sao? b) Tính ñoä daøi ñoaïn DE.Baøi 20:Cho hình thang ABCD ( AB//CD) .Goïi O laø giao ñieåm 2 ñöôøng cheùo AC vaø BD .Bieát AB = 3cm , OA =2cm , OC = 4cm , OD = 3,6cm. ...
Tìm kiếm theo từ khóa liên quan:
Bài tập chứng minh tam giác đồng dạng Câu hỏi chứng minh tam giác đồng dạng Ôn tập chứng minh tam giác đồng dạng Đề bài chứng minh tam giác đồng dạng Bài tập hình học Tam giác đồng dạngGợi ý tài liệu liên quan:
-
Ứng dụng tâm tỉ cự giải bài toán cực trị Hình học
10 trang 48 0 0 -
Giáo án Toán lớp 8: Bài tập cuối chương 8 (Sách Chân trời sáng tạo)
6 trang 32 0 0 -
Hình học phẳng và các bài toán (Tập 1): Phần 1
137 trang 31 0 0 -
Giáo án Hình học lớp 8: Chương 3: Tam giác đồng dạng
53 trang 29 0 0 -
Đề cương ôn tập học kì 2 môn Toán lớp 8 năm 2022-2023 - Trường THCS Ngô Sĩ Liên, Bà Rịa - Vũng Tàu
6 trang 28 0 0 -
Đề thi giữa học kì 2 môn Toán lớp 8 năm 2022-2023 có đáp án - Trường THCS Phan Bội Châu, Hiệp Đức
11 trang 26 0 0 -
Tam giác đồng dạng - Toán bổ trợ và nâng cao
31 trang 24 0 0 -
Bài tập chương 3 đại số tổ hợp
15 trang 23 0 0 -
Hướng dẫn giải Toán Hình học 10
91 trang 23 0 0 -
24 trang 22 0 0