Cellular automata for traffic simulation Nagel-Schreckenberg model
Thông tin tài liệu:
Nội dung trích xuất từ tài liệu:
Cellular automata for traffic simulation Nagel-Schreckenberg model Project report in Computational Physics Cellular automata for trac simulation Nagel-Schreckenberg model Torsten Held Stefan Bittihn Bonn, 17th March 2011 Abstract In this project, trac is simulated according to the cellular automaton of the Nagel-Scheckenberg model (1992) with dierent boundary conditions. The sudden occurrence of trac jams is successfully realised as well as boundary induced phases and phase transitions are observed in the Asymmetric Simple Exclusion Process. The extension to the Velocity Dependent Randomization model leads to metastabile high ow states and hysteresis of the ow. The impact of speed limits on the probability of the formation of trac jams is investigated. Furthermore, the eects of on- and o-ramps and trac lights are analysed.Contents1 Introduction 22 The Nagel-Schreckenberg model 2 2.1 Boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.2 Parameters and transfer to reality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 The Asymmetric Simple Exclusion Process 34 Metastability and hysteresis in the Velocity-Dependent-Randomization-model 4 4.1 Control by initial Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 4.2 Control by on- and o-ramp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 4.3 Lifetime of the metastable phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 Further applications 7 5.1 The eects of on- and o-ramps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 5.2 The eects of trac lights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 Summary 91 IntroductionThe aim of trac-simulation-algorithms is to gain an understanding of (road-)trac including its variousphenomena, e.g. the dependence of the dierent trac parameters as ow and density or the formationof trac jams. With the help of a suitable simulation, one can make predections about the development of real tracsituations and furthermore use the results to optimise trac plannings. The rst attempts to simulate trac date back into the 1950s. A very important step foreward was theNagel-Schreckenberg model (NaSch model) which was invented by Kai Nagel and Michael Schreckenbergin 1992. It was the rst model to take into account the imperfect bahaviour of human drivers and wasthus the rst model to explain the spontanious formation of trac jams. The NaSch model is the basisof this project. An interesting application of the (extended) NaSch model is for example the OSLIM project [1] whichsimulates and predicts the trac of North-Rhine-Westphalia online and in real time.2 The Nagel-Schreckenberg modelThe basic NaSch model [2] is a probabilistic cellular automaton: It contains a one-lane-road with discretepositions (cells). Also time (rounds) and integral velocities 0, ..., vmax are discrete. Every round, rsteach car updates its velocity dependent on the position of the next car ahead and then every car movesaccording to its velocity. The updating consists of 4 steps: 1. Acceleration: vn → min(vn + 1, vmax ) 2. Deceleration: vn → min(vn , dn − 1) 3. Randomization: vn → max(vn − 1, 0) with probability p 4. Movement: xn → xn + vnThe acceleration step is given by the attempt to drive as fast as possible within the speed limit vmax .Every car has the same target velocity vmax . The acceleration is 1. The deceleration step is to avoidcrashes: A car will not drive on or pass the position of the car driving ahead with distance dn . Therandomization step leads to an additional deceleration of 1 with probability p and is due to severalbehaviours of human drivers: The rst one is an overreaction at braking and keeping a too large distanceto the car in front. Secondly, when dn increases, one might have a delay in the acceleration process. As alast point, at maximum velocity and free lane, one has a probability of sudden deceleration by distraction.The randomization is the basis for the formation of jams, because o ...
Tìm kiếm theo từ khóa liên quan:
Cellular automata Tracffic simulation Nagel-Schreckenberg model Traffic jams Ùn tắc giao thông Giao thông đường bộTài liệu cùng danh mục:
-
Thiết lập bảng tra tính toán chuyển vị của dầm bằng phương pháp nhân biểu đồ Veresaghin
4 trang 512 3 0 -
Bài giảng Kiến trúc nhập môn - Th.S Trần Minh Tùng
21 trang 358 0 0 -
Đào tạo kiến trúc sư trong bối cảnh cách mạng công nghiệp 4.0
5 trang 288 0 0 -
Các nhân tố ảnh hưởng tới sự sẵn sàng thực hiện đấu thầu điện tử thi công xây dựng
16 trang 268 0 0 -
Phân tích các yếu tố ảnh hưởng đến sự chậm thanh toán cho nhà thầu phụ trong các dự án nhà cao tầng
10 trang 260 0 0 -
12 trang 242 0 0
-
Đánh giá khả năng làm việc an toàn của cọc đóng/ép do sai lệch vị trí trong quá trình thi công
9 trang 236 0 0 -
7 trang 225 0 0
-
PHƯƠNG PHÁP GIA TẢI TRƯỚC SỬ DỤNG CÁC VẬT THOÁT NƯỚC ĐỨNG ĐÚC SẴN
106 trang 220 0 0 -
7 trang 214 0 0
Tài liệu mới:
-
66 trang 0 0 0
-
Giáo án Sinh hoạt ngoại khóa THPT: Hoạt động Ngày hội văn hóa dân gian năm học 2020-20201
10 trang 0 0 0 -
Đề thi tuyển sinh vào lớp 10 môn Toán (Chuyên) năm 2024 có đáp án - Trường THCS Ninh Vân, Hoa Lư
13 trang 0 0 0 -
Sandbox và TrustRank của Google
4 trang 1 0 0 -
Cách kiểm tra website có bị Sandbox.
3 trang 1 0 0 -
Google Sandbox và Phương pháp kiểm tra
4 trang 1 0 0 -
Bài giảng Autocad 2D: Dùng cho phiên bản Autocad 2018 – KS. Nguyễn Văn Huy
229 trang 0 0 0 -
125 trang 0 0 0
-
129 trang 0 0 0
-
69 trang 0 0 0