Chuyên đề: I. GIÁ TRỊ TUYỆT ĐỐI CỦA MỘT SỐ
Số trang: 9
Loại file: pdf
Dung lượng: 275.40 KB
Lượt xem: 13
Lượt tải: 0
Xem trước 2 trang đầu tiên của tài liệu này:
Thông tin tài liệu:
Tham khảo tài liệu chuyên đề: i. giá trị tuyệt đối của một số, tài liệu phổ thông, toán học phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả
Nội dung trích xuất từ tài liệu:
Chuyên đề: I. GIÁ TRỊ TUYỆT ĐỐI CỦA MỘT SỐ Chuyên đề: I. GIÁ TRỊ TUYỆT ĐỐI CỦA MỘT SỐA.KIẾN THỨC:Giá trị tuyệt đối của một số lưu ý các tính chất sau trong giải toán : 1/ GTTĐ của một số thì không âm / x / x 2/ GTTĐ của một số thì lớn hơn hoặc bằng số đó / x / x 3/ GTTĐ của một tổng không lớn hơn tổng các GTTĐ /x + y / / x / / y / Hiệu không nhỏ hơn hiệu các GTTĐ / x-y/ /x/ - /y/ 4/ GTTĐ : Với a > 0 thì: /x / = a x = a x a / x / > a x a / x/ < a -a< x< aB. LUYỆN TẬP: 1. Dạng: Tính giá trị của một Biểu thức : Bài 1 : Tính Gía trị biểu thức A = 3 x 2 2 x 1 với /x / = 0,5 Giải: / x / = 0,5 x = 0,5 hoặc x = - 0,5 - Nếu x = 0,5 thì A = 0,75 - Nếu x = - 0,5 thì A = 2,75 2. Dạng : Rút gọn Biểu thức có chứa dấu Giá trị tuyệt đốiBài 2 : Rút gọn biểu thức A = 3 ( 2x - 1 ) - / x - 5 / Giải : với x - 5 0 x 0 thì / x -5 / = x-5 với x –5 < 0 x < 5 thì / x – 5 / = - x + 5 Xét cả 2 trường hợp ứng với hai khỏang giá trị của biến x a/ Nếu x 5 thì A = 3 (2x – 1 ) – ( x – 5 ) = 5x + 2 b/ Nếu x < 5 thì A = 3 ( 2x – 1 ) – ( -x + 5 ) = 7x – 8 3. Dạng: Tính giá trị của biến trong Đẳng thức có chứa dấu GTTĐ:Bài 3 : Tìm x . Biết 2 / 3x – 1 / + 1 = 5 Giải : Ta có / 3x - 1 / = 2 Nên 3x – 1 = +2 và -2 Xét cả hai trường hợp : a/ 3x – 1 = 2 => x = 1 1 b/ 3x - 1 = 2 => x = - 3Bài4 : Với giá trị nào của a,b ta có đẳng thức : /a ( b – 2 ) / = a ( 2 – b )? Giải : Ta biến đổi /a (b – 2 )/ = / a ( 2 – b )/ (1) vì /A/ = /-A/ / A / = A A 0 Do đó (1) xảy ra 4 trường hợp : a/ a = 0 thì b tùy ý b/ b = 2 thì a tùy ý c/ a > 0 thì b < 2 d/ a < 0 thì b > 2Bài 5 : Tìm các số a , b sao cho a + b = / a / - / b / (1) HD: Xét 4 trường hợp : a/ a 0, b > 0 thì (1) a + b = a – b b = - b (không xảy ra ) b/ a 0, b 0 thì (1) a = b = a + b Đẳng thức nầy luôn luôn đúng.Vậy : a 0, b 0 thỏa mãn bài toán . c/ a < 0 , b > 0 thì (1) a + b = -a – b a = - b . Vây a < 0 và b = -a thỏa mãn bài toán . d/ a < 0 , b 0 thì (1) a + b = -a + b a = -a ( không xảy ra ) Kết luận : Các giá trị a,b phải tìm là a 0, b 0 hoặc a < 0 , b > 0 4. Dạng Tìm GTNN , GTLN của biểu thức chứa dấu GT tuyệt đối :Bài 6: a/Tìm GTNN của A = 2 / 3x – 1 / - 4 Với mọi x ta có / 3x – 1 / 0 => 2 / 3x – 1 / 0 Do đó 2 / 3x - 1 / - 4 - 4 Vậy GTNN của A = -4 tại 3x – 1 = 0 x = 1/3 b/ Tìm GTNN của B= 1,5 + /2 - x / HD: B đạt GTNN bằng 1,5 tại=2 c/ Tìm GTNN của C = /x-3/ HD:Ta có x 0 / x 3 / 0 GTNN 0Bài 7: a/ Tìm GTLN của B = 10 - 4 / x - 2 / Với mọi x ta có / x – 2 / 0 => - / 4 / x - 2 / 10 Do đó 10- - 4 / x - 2 / 10 Vậy GTLN của B = 10 tại x = 2 b/ Tìm GGLN của B = -/ x+2 / HD: C= - /x+2/ 0 GTLN 0khix 2 c/ Tìm GTLN của C= 1 - /2x-3/ HD: D = 1-/2x-3/ 1 GTLNlla0khix 3 / 2 6Bài 8: Tìm GTNN của C = với x là số nguyên / x / 3 - Xét / x / > 3 => C > 0 - Xét / x / < 3 => / x / = 0;1hoặc 2 => c = -2 ;-3 hoặc -6 Vậy GTNN của C = -6 x = 2 ; -2 .Bài 9 Tìm GTLN của C = x - / x / - Xét x 0 => C = x - x = 0 (1) - Xét x < 0 => C = x – (- x ) = 2x < 0 (2) Từ (1) và (2) ta thấy C 0 Vậy GTLN của C = 0 x 0Bài 10 : Tìm giá trị biểu thức :a/ A = 6 x 3 3x 2 2 / x / 4 với x = -2/3 (đs 20/9)b/ B = 2/x/ - 4/y/ với x = ½ và y = - 3 (đs -8 )Bài 11 : Rút gọn biểu thức :a/ 3 (x - 1 ) – 2 / x + 3 / (đs :x – 9 với x 3 ;5x+ 3 với x < 3)b/ 2 / x – 3 / - / 4x - 1 / (đs: = 2x+5 với x < ¼ ; Bằng -6x+7 với ¼ x < 3và bằng -2x -5 với x 3. Tìm GTNN của các biểu thức :Bài 12 :a/ A = 2 / 3x – 2 / - 1 => GTNN của A = -1 x = 2/3b/ B = 5 / 1 – 4x / - 1 => GTNN của B = -1 x = 1/4 C = x2 + 3 / y – 2 / - 1c/ => GTNN của C = -1 x = 0 ; y = 2d/ D = x + / x / ( xét x > 0 ;c < 0) => GTNN của D = 0 x 0Bài 13: Tìm GTLN của các biểu thức :e/ E = 5 - / 2x - 1 / => GTLN của E = 5 x = 1/2 1f/ F= => GTLN của F =1/3 x =2 / x 2 / 3 x2g/ G= với x là số nguyên /x/HD : Xét 3 TH : * x 2 C 1 * x = 1 C = 1 x2 2 * x 1 G 1 x x 2 2 Ta thấy G lớn nhất khi ...
Nội dung trích xuất từ tài liệu:
Chuyên đề: I. GIÁ TRỊ TUYỆT ĐỐI CỦA MỘT SỐ Chuyên đề: I. GIÁ TRỊ TUYỆT ĐỐI CỦA MỘT SỐA.KIẾN THỨC:Giá trị tuyệt đối của một số lưu ý các tính chất sau trong giải toán : 1/ GTTĐ của một số thì không âm / x / x 2/ GTTĐ của một số thì lớn hơn hoặc bằng số đó / x / x 3/ GTTĐ của một tổng không lớn hơn tổng các GTTĐ /x + y / / x / / y / Hiệu không nhỏ hơn hiệu các GTTĐ / x-y/ /x/ - /y/ 4/ GTTĐ : Với a > 0 thì: /x / = a x = a x a / x / > a x a / x/ < a -a< x< aB. LUYỆN TẬP: 1. Dạng: Tính giá trị của một Biểu thức : Bài 1 : Tính Gía trị biểu thức A = 3 x 2 2 x 1 với /x / = 0,5 Giải: / x / = 0,5 x = 0,5 hoặc x = - 0,5 - Nếu x = 0,5 thì A = 0,75 - Nếu x = - 0,5 thì A = 2,75 2. Dạng : Rút gọn Biểu thức có chứa dấu Giá trị tuyệt đốiBài 2 : Rút gọn biểu thức A = 3 ( 2x - 1 ) - / x - 5 / Giải : với x - 5 0 x 0 thì / x -5 / = x-5 với x –5 < 0 x < 5 thì / x – 5 / = - x + 5 Xét cả 2 trường hợp ứng với hai khỏang giá trị của biến x a/ Nếu x 5 thì A = 3 (2x – 1 ) – ( x – 5 ) = 5x + 2 b/ Nếu x < 5 thì A = 3 ( 2x – 1 ) – ( -x + 5 ) = 7x – 8 3. Dạng: Tính giá trị của biến trong Đẳng thức có chứa dấu GTTĐ:Bài 3 : Tìm x . Biết 2 / 3x – 1 / + 1 = 5 Giải : Ta có / 3x - 1 / = 2 Nên 3x – 1 = +2 và -2 Xét cả hai trường hợp : a/ 3x – 1 = 2 => x = 1 1 b/ 3x - 1 = 2 => x = - 3Bài4 : Với giá trị nào của a,b ta có đẳng thức : /a ( b – 2 ) / = a ( 2 – b )? Giải : Ta biến đổi /a (b – 2 )/ = / a ( 2 – b )/ (1) vì /A/ = /-A/ / A / = A A 0 Do đó (1) xảy ra 4 trường hợp : a/ a = 0 thì b tùy ý b/ b = 2 thì a tùy ý c/ a > 0 thì b < 2 d/ a < 0 thì b > 2Bài 5 : Tìm các số a , b sao cho a + b = / a / - / b / (1) HD: Xét 4 trường hợp : a/ a 0, b > 0 thì (1) a + b = a – b b = - b (không xảy ra ) b/ a 0, b 0 thì (1) a = b = a + b Đẳng thức nầy luôn luôn đúng.Vậy : a 0, b 0 thỏa mãn bài toán . c/ a < 0 , b > 0 thì (1) a + b = -a – b a = - b . Vây a < 0 và b = -a thỏa mãn bài toán . d/ a < 0 , b 0 thì (1) a + b = -a + b a = -a ( không xảy ra ) Kết luận : Các giá trị a,b phải tìm là a 0, b 0 hoặc a < 0 , b > 0 4. Dạng Tìm GTNN , GTLN của biểu thức chứa dấu GT tuyệt đối :Bài 6: a/Tìm GTNN của A = 2 / 3x – 1 / - 4 Với mọi x ta có / 3x – 1 / 0 => 2 / 3x – 1 / 0 Do đó 2 / 3x - 1 / - 4 - 4 Vậy GTNN của A = -4 tại 3x – 1 = 0 x = 1/3 b/ Tìm GTNN của B= 1,5 + /2 - x / HD: B đạt GTNN bằng 1,5 tại=2 c/ Tìm GTNN của C = /x-3/ HD:Ta có x 0 / x 3 / 0 GTNN 0Bài 7: a/ Tìm GTLN của B = 10 - 4 / x - 2 / Với mọi x ta có / x – 2 / 0 => - / 4 / x - 2 / 10 Do đó 10- - 4 / x - 2 / 10 Vậy GTLN của B = 10 tại x = 2 b/ Tìm GGLN của B = -/ x+2 / HD: C= - /x+2/ 0 GTLN 0khix 2 c/ Tìm GTLN của C= 1 - /2x-3/ HD: D = 1-/2x-3/ 1 GTLNlla0khix 3 / 2 6Bài 8: Tìm GTNN của C = với x là số nguyên / x / 3 - Xét / x / > 3 => C > 0 - Xét / x / < 3 => / x / = 0;1hoặc 2 => c = -2 ;-3 hoặc -6 Vậy GTNN của C = -6 x = 2 ; -2 .Bài 9 Tìm GTLN của C = x - / x / - Xét x 0 => C = x - x = 0 (1) - Xét x < 0 => C = x – (- x ) = 2x < 0 (2) Từ (1) và (2) ta thấy C 0 Vậy GTLN của C = 0 x 0Bài 10 : Tìm giá trị biểu thức :a/ A = 6 x 3 3x 2 2 / x / 4 với x = -2/3 (đs 20/9)b/ B = 2/x/ - 4/y/ với x = ½ và y = - 3 (đs -8 )Bài 11 : Rút gọn biểu thức :a/ 3 (x - 1 ) – 2 / x + 3 / (đs :x – 9 với x 3 ;5x+ 3 với x < 3)b/ 2 / x – 3 / - / 4x - 1 / (đs: = 2x+5 với x < ¼ ; Bằng -6x+7 với ¼ x < 3và bằng -2x -5 với x 3. Tìm GTNN của các biểu thức :Bài 12 :a/ A = 2 / 3x – 2 / - 1 => GTNN của A = -1 x = 2/3b/ B = 5 / 1 – 4x / - 1 => GTNN của B = -1 x = 1/4 C = x2 + 3 / y – 2 / - 1c/ => GTNN của C = -1 x = 0 ; y = 2d/ D = x + / x / ( xét x > 0 ;c < 0) => GTNN của D = 0 x 0Bài 13: Tìm GTLN của các biểu thức :e/ E = 5 - / 2x - 1 / => GTLN của E = 5 x = 1/2 1f/ F= => GTLN của F =1/3 x =2 / x 2 / 3 x2g/ G= với x là số nguyên /x/HD : Xét 3 TH : * x 2 C 1 * x = 1 C = 1 x2 2 * x 1 G 1 x x 2 2 Ta thấy G lớn nhất khi ...
Tìm kiếm theo từ khóa liên quan:
Tài liệu toán học cách giải bài tập toán phương pháp học toán bài tập toán học cách giải nhanh toánGợi ý tài liệu liên quan:
-
Các phương pháp tìm nhanh đáp án môn Toán: Phần 2
166 trang 209 0 0 -
Tài liệu ôn luyện chuẩn bị cho kỳ thi THPT Quốc gia môn Toán: Phần 2
135 trang 76 0 0 -
22 trang 49 0 0
-
Một số bất đẳng thức cơ bản ứng dụng vào bất đẳng thức hình học - 2
29 trang 37 0 0 -
Giáo trình hình thành ứng dụng phân tích xử lý các toán tử trong một biểu thức logic p4
10 trang 37 0 0 -
Giáo trình Toán chuyên đề - Bùi Tuấn Khang
156 trang 36 0 0 -
Tiết 2: NHÂN ĐA THỨC VỚI ĐA THỨC
5 trang 34 0 0 -
Bộ câu hỏi trắc nghiệm ôn tập cuối năm Môn: Toán lớp 4
15 trang 33 0 0 -
1 trang 32 0 0
-
Các phương pháp tìm nhanh đáp án môn Toán: Phần 1
158 trang 31 0 0