Danh mục

Chuyên đề: MỘT SỐ PHƯƠNG PHÁP CHỨNG MINH BẤT ĐẲNG THỨC

Số trang: 9      Loại file: pdf      Dung lượng: 189.72 KB      Lượt xem: 11      Lượt tải: 0    
Hoai.2512

Xem trước 2 trang đầu tiên của tài liệu này:

Thông tin tài liệu:

Tham khảo tài liệu chuyên đề: một số phương pháp chứng minh bất đẳng thức, tài liệu phổ thông, toán học phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả
Nội dung trích xuất từ tài liệu:
Chuyên đề: MỘT SỐ PHƯƠNG PHÁP CHỨNG MINH BẤT ĐẲNG THỨCChuyên đề: MỘT SỐ PHƯƠNG PHÁP CHỨNG MINH BẤT ĐẲNG THỨC Giáo viên biên soạn: HUỲNH CHÍ HÀO. Sáng lập chihao.info Đơn vị: THPT Thành phố Cao Lãnh Tỉnh Đồng Tháp - Ngày soạn 28/04/2009.Phương pháp 1: SỬ DỤNG BẤT ĐẲNG THỨC CÔ-SIKỹ thuật 1 : Tách, ghép và phân nhómBài 1:Cho a, b,c là ba số dương thỏa mãn điều kiện a + b + c = 3Chứng minh rằng: a3 b3 c3 3 + + ≥ (1) (a + b)(a + c) (b + c)(b + a ) (c + a )(c + b) 4Hướng dẫn:+ Dự đoán dấu = xảy ra.+ Sử dụng giả thiết biến đổi bđt về bđt đồng bậc.+ Sử dụng kỹ thuật tách ghép và phân nhóm. Bổ sung thêm một số số hạng để sau khi sử dụng bđt Cô-si ta khử được mẫu số của biểu thức phân thức.Bài giải:Sử dụng giả thiết a + b + c = 3 để đưa bđt về bđt đồng bậc 1 ở hai vế a3 b3 c3 (a + b + c) (1) ⇔ + + ≥ (a + b)(a + c) (b + c)(b + a ) (c + a )(c + b) 4Áp dụng bất đẳng thức Cô-si ta có: a3 a+b a+c ⎛ a3 ⎞ ⎛ a + b ⎞ ⎛ a + c ⎞ 3a ⎟⎜ + + ≥ 33 ⎜ ⎟ ⎟⎜ ⎜ (a + b ) ( a + c ) ⎠ ⎝ 8 ⎠ ⎜ 8 ⎠ = 4 ⎜ ⎟⎜ ⎟⎝ ⎟ ⎟ ⎟ (a + b ) ( a + c ) 8 8 ⎜ ⎝ ⎟⎜Chứng minh tương tự ta cũng được: b3 b+c b+a ⎛ b3 ⎞ ⎛ b + c ⎞⎛ b + a ⎞ 3b ⎟ + + ⎜ ≥ 33 ⎜ ⎟⎜ ⎟⎜ ⎟ (b + c)(b + a ) 8 8 ⎜(b + c)(b + a )⎠ ⎜ 8 ⎠⎝ 8 ⎠ = 4 ⎜ ⎝ ⎟⎜ ⎟⎝ ⎟⎜ ⎟ ⎟ ⎟ c3 c+a c+b ⎛ c3 ⎞ ⎛ c + a ⎞ ⎛ c + b ⎞ 3c ⎟⎜ + + ≥ 33 ⎜ ⎟ ⎟⎜ ⎜(c + a )(c + b)⎠ ⎜ 8 ⎠⎝ 8 ⎠ = 4 ⎜ ⎟⎝ ⎟⎜ ⎟ ⎟ ⎟ ( c + a ) (c + b) 8 8 ⎜ ⎝ ⎟Cộng vế với vế các bđt trên và biến đổi ta được bđt: a3 b3 c3 a+b+c 3 + + ≥ = (đpcm) (a + b)(a + c) (b + c)(b + a ) (c + a )(c + b) 4 4Đẳng thức xảy ra ⇔ a = b = c = 1Bài tập tương tự:Bài 1:Cho a, b,c là ba số dương thỏa mãn điều kiện abc = 1Chứng minh rằng: a3 b3 c3 3 + + ≥ (1 + b)(1 + c) (1 + c)(1 + a ) (1 + a )(1 + b) 4Bài 2:Cho a, b,c là ba số dương thỏa mãn điều kiện ab + bc + ca = abcChứng minh rằng: a2 b2 c2 a+b+c + + ≥ a + bc b + ca c + ab 4Bài 2:Cho a, b,c là ba số dương thỏa mãn điều kiện a + b + c = 3Chứng minh rằng: a3 b3 c3 + + ≥ 1 (1) b (2c + a ) c (2a + b) a (2b + c)Hướng dẫn:+ Dự đoán dấu = xảy ra.+ Sử dụng giả thiết biến đổi bđt về bđt đồng bậc.+ Sử dụng kỹ thuật tách ghép và phân nhóm. Bổ sung thêm một số số hạng để sau khi sử dụng bđt Cô-si ta khử được mẫu số của biểu thức phân thức.Bài giải:Sử dụng giả thiết a + b + c = 3 để đưa bđt về bđt đồng bậc 1 ở hai vế a3 b3 c3 a+b+c (1) ⇔ + + ≥ b (2c + a ) c (2a + b) a (2b + c) 3Áp dụng bất đẳng thức Cô-si ta có: 9a 3 ⎛ 9a 3 ⎞ ⎟ (3b)(2c + a ) = 9a + 3b + (2c + a ) ≥ 3 3 ⎜ ⎜ ⎟ ⎟ b (2c + a ) ⎝ ⎟ ⎜ b (2c + a )⎠Chứng minh tương tự ta cũng được: 9b3 ⎛ 9b3 ⎞ ⎟ + 3c + (2a + b) ≥ 3 3 ⎜ ⎟ ⎜ c (2a + b)⎠ (3c)(2a + b) = 9b ...

Tài liệu được xem nhiều: