![Phân tích tư tưởng của nhân dân qua đoạn thơ: Những người vợ nhớ chồng… Những cuộc đời đã hóa sông núi ta trong Đất nước của Nguyễn Khoa Điềm](https://timtailieu.net/upload/document/136415/phan-tich-tu-tuong-cua-nhan-dan-qua-doan-tho-039-039-nhung-nguoi-vo-nho-chong-nhung-cuoc-doi-da-hoa-song-nui-ta-039-039-trong-dat-nuoc-cua-nguyen-khoa-136415.jpg)
Công thức lượng giác và bất đẳng thức cần nắm
Số trang: 14
Loại file: pdf
Dung lượng: 290.07 KB
Lượt xem: 10
Lượt tải: 0
Xem trước 2 trang đầu tiên của tài liệu này:
Thông tin tài liệu:
Bất đẳng thức là một chủ đề đa dạng và hấp dẫn với nhiều bạn trẻ. Nói đến bất đẳng thức nhiều bạn trong chúng ta thường quan tâm tới bất đẳng thức đại số mà ở đó có nhiều kĩ thuật để khai thác và chứng minh nhưng ngoài bất đẳng thức đại số thì chúng ta còn có cả bất đẳng thức hình học với những nét đẹp riêng của hình học trong đó .Bài viết sau đây sẽ trình bày phương pháp sử dụng lượng giác chứng minh bất đẳng thức hình học. Ở đó...
Nội dung trích xuất từ tài liệu:
Công thức lượng giác và bất đẳng thức cần nắmG.NTH 1. C¸c kiÕn thøc cÇn n¾m 1.1. C¸c hÖ thøc c¬ b¶n π 1 + 1 + tg2α = + cos 2 α + sin 2 α = 1 (α ≠ + kπ) cos α 2 2 kπ 1 + tgα . cotgα = 1 (α ≠ + 1 + cotg2α = (α ≠ kπ) ) sin 2 α 2 1.2. C«ng thøc céng gãc + cos(α ± β) = cosα cosβ sinα sinβ + sin(α ± β) = sinα cosβ ± cosα sinβ tgα ± tgβ π + tg (α ± β) = (α ; β ≠ + kπ) 1 tgα tgβ 2 cot gα. cot gβ 1 + cotg(α ± β) = (α; β ≠ kπ) cot gα ± cot gβ 1.3. C«ng thøc nh©n + sin2α = 2 sinα cosα + cos2α = cos2α - sin2α = 2cos2α - 1 = 1 - 2sin2α 2 tgα π π + tg2α = (α ≠ + k ) 1 − tg α 2 4 2 cot g 2 α − 1 kπ + cotg2α = (α ≠ ) 2 cot gα 2 + sin3α = 3sinα - 4sin3α + cos3α = 4cos3α - 3cosα 3tgα − tg 3α π π + tg3α = (α ≠ + k ) 1 − 3tg α3 6 3 1.4. C«ng thøc h¹ bËc 1 + cos 2α 1 − cos 2α + cos2α = + sin2α = 2 2 π 1 − cos 2α (α ≠ + kπ) + tg2α = 1 + cos 2α 2 1.5. C«ng thøc biÕn ®æi tæng thµnh tÝch: α+β α −β + cosα + cosβ = 2cos cos 2 2 α +β αβ + cosα - cosβ = - 2sin sin 2 2 α+β αβ + sinα + sinβ = 2sin cos 2 2 α +β α −β + sinα - sinβ = = - 2cos sin 2 2 1G.NTH sin(α ± β) π (α; β ≠ + kπ) + tgα ± tgβ = cos α. cos β 2 1.6. C«ng thøc biÕn ®æi tÝch thµnh tæng: 1 + cosα.cosβ = [cos(α + β) + cos(α − β)] 2 1 + sinα.sinβ = [cos(α − β) + cos(α + β)] 2 1 + sinα.cosβ = [sin(α + β) + sin(α − β)] 2 BiÓu thøc lîng gi¸c BiÓu thøc ®¹i sè C«ng thøc lîng gi¸c t¬ng tù 1 1+tan2t = 1 + x2 1 + tan2t cos 2 t 4x3 - 3x 4cos3t - 3cost 4cos3t - 3cost = cos3t 2x2 - 1 2cos2t - 1 2cos2t - 1 = cos2t 2x 2 tan t 2 tan t = tan2t 1 − tan 2 t 1 − tan 2 t 1− x2 2x 2 tan t 2 tan t = sin2t 1 + tan 2 t 1 + tan 2 t 1+ x2 x+y tan + tan tan + tan = tan(α+β) 1 − tan tan 1 − tan tan 1 − xy 1 1 − 1 = tan2α −1 x2 ...
Nội dung trích xuất từ tài liệu:
Công thức lượng giác và bất đẳng thức cần nắmG.NTH 1. C¸c kiÕn thøc cÇn n¾m 1.1. C¸c hÖ thøc c¬ b¶n π 1 + 1 + tg2α = + cos 2 α + sin 2 α = 1 (α ≠ + kπ) cos α 2 2 kπ 1 + tgα . cotgα = 1 (α ≠ + 1 + cotg2α = (α ≠ kπ) ) sin 2 α 2 1.2. C«ng thøc céng gãc + cos(α ± β) = cosα cosβ sinα sinβ + sin(α ± β) = sinα cosβ ± cosα sinβ tgα ± tgβ π + tg (α ± β) = (α ; β ≠ + kπ) 1 tgα tgβ 2 cot gα. cot gβ 1 + cotg(α ± β) = (α; β ≠ kπ) cot gα ± cot gβ 1.3. C«ng thøc nh©n + sin2α = 2 sinα cosα + cos2α = cos2α - sin2α = 2cos2α - 1 = 1 - 2sin2α 2 tgα π π + tg2α = (α ≠ + k ) 1 − tg α 2 4 2 cot g 2 α − 1 kπ + cotg2α = (α ≠ ) 2 cot gα 2 + sin3α = 3sinα - 4sin3α + cos3α = 4cos3α - 3cosα 3tgα − tg 3α π π + tg3α = (α ≠ + k ) 1 − 3tg α3 6 3 1.4. C«ng thøc h¹ bËc 1 + cos 2α 1 − cos 2α + cos2α = + sin2α = 2 2 π 1 − cos 2α (α ≠ + kπ) + tg2α = 1 + cos 2α 2 1.5. C«ng thøc biÕn ®æi tæng thµnh tÝch: α+β α −β + cosα + cosβ = 2cos cos 2 2 α +β αβ + cosα - cosβ = - 2sin sin 2 2 α+β αβ + sinα + sinβ = 2sin cos 2 2 α +β α −β + sinα - sinβ = = - 2cos sin 2 2 1G.NTH sin(α ± β) π (α; β ≠ + kπ) + tgα ± tgβ = cos α. cos β 2 1.6. C«ng thøc biÕn ®æi tÝch thµnh tæng: 1 + cosα.cosβ = [cos(α + β) + cos(α − β)] 2 1 + sinα.sinβ = [cos(α − β) + cos(α + β)] 2 1 + sinα.cosβ = [sin(α + β) + sin(α − β)] 2 BiÓu thøc lîng gi¸c BiÓu thøc ®¹i sè C«ng thøc lîng gi¸c t¬ng tù 1 1+tan2t = 1 + x2 1 + tan2t cos 2 t 4x3 - 3x 4cos3t - 3cost 4cos3t - 3cost = cos3t 2x2 - 1 2cos2t - 1 2cos2t - 1 = cos2t 2x 2 tan t 2 tan t = tan2t 1 − tan 2 t 1 − tan 2 t 1− x2 2x 2 tan t 2 tan t = sin2t 1 + tan 2 t 1 + tan 2 t 1+ x2 x+y tan + tan tan + tan = tan(α+β) 1 − tan tan 1 − tan tan 1 − xy 1 1 − 1 = tan2α −1 x2 ...
Tìm kiếm theo từ khóa liên quan:
giải tích số tài liệu học môn toán sổ tay toán học công thức lượng giác bất đẳng thức kiến thức cơ bản đại sốTài liệu liên quan:
-
13 trang 268 0 0
-
Báo cáo thí nghiệm về thông tin số
12 trang 241 0 0 -
Luận Văn: Ứng Dụng Phương Pháp Tọa Độ Giải Một Số Bài Toán Hình Học Không Gian Về Góc và Khoảng Cách
37 trang 117 0 0 -
500 Bài toán bất đẳng thức - Cao Minh Quang
49 trang 57 0 0 -
0 trang 48 0 0
-
Khai thác một tính chất của tam giác vuông
47 trang 47 0 0 -
21 trang 46 0 0
-
Tuyển tập 200 bài tập bất đẳng thức có lời giải chi tiết năm 2015
56 trang 44 0 0 -
Bất đẳng thức (BDT) Erdos-Mordell
13 trang 42 0 0 -
31 trang 41 1 0