Danh mục

Đề 5 - Đề thi thử đại học môn toán 2011

Số trang: 3      Loại file: pdf      Dung lượng: 247.80 KB      Lượt xem: 13      Lượt tải: 0    
tailieu_vip

Phí lưu trữ: miễn phí Tải xuống file đầy đủ (3 trang) 0
Xem trước 2 trang đầu tiên của tài liệu này:

Thông tin tài liệu:

Tham khảo tài liệu đề 5 - đề thi thử đại học môn toán 2011, tài liệu phổ thông, ôn thi đh-cđ phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả
Nội dung trích xuất từ tài liệu:
Đề 5 - Đề thi thử đại học môn toán 2011 Trường THPT MINH KHAI ĐỀ THI THỬ ĐẠI HỌC VÀ CAO ĐẲNG NĂM 2010 HÀ TĨNH Môn thi: TOÁN Thời gian: 180 phút (không kể thời gian phát đề) Đề số 5I. PHẦN CHUNG (7 điểm)Câu I (2 điểm): Cho hàm số y = x 3 + 2mx 2 + (m + 3) x + 4 (Cm). 1) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số khi m = 1. 2) Cho điểm I(1; 3). Tìm m để đường thẳng d: y = x + 4 cắt (Cm) tại 3 điểm phân biệt A(0; 4), B, C sao cho DIBC có diện tích bằng 8 2 .Câu II (2 điểm): ì x - 2 y - xy = 0 ï í 1) Giải hệ phương trình: . ï x -1 + 4y -1 = 2 î 1 2(cos x - sin x ) = 2) Giải phương trình: tan x + cot 2 x cot x - 1 cos x sin x - tan x A = limCâu III (1 điểm): Tính giới hạn: x 2 sin x x ®0Câu IV (1 điểm): Cho hình lập phương ABCD.A¢B¢C¢D¢ cạnh bằng a. Gọi M, N lần lượt là trung điểm của AB và C¢D¢. Tính thể tích khối chóp B¢.A¢MCN và cosin của góc tạo bởi hai mặt phẳng (A¢MCN) và (ABCD).Câu V (1 điểm): Cho x, y, z là những số dương thoả mãn: x 2 + y 2 + z2 = xyz . Chứng minh bất đẳng thức: 1 x y z + + £ 2 x 2 + yz y2 + xz z2 + xyII. PHẦN TỰ CHỌN (3 điểm)1. Theo chương trình chuẩnCâu VI.a (2 điểm): 1) Trong mặt phẳng với hệ toạ độ Oxy, cho hai đường tròn (C1): x 2 + y 2 = 13 và (C2): ( x - 6)2 + y 2 = 25 . Gọi A là một giao điểm của (C1) và (C2) với yA > 0. Viết phương trình đường thẳng d đi qua A và cắt (C1), (C2) theo hai dây cung có độ dài bằng nhau. 3 x x x+ ( 5 - 1) + ( 5 + 1) - 2 =0 2 2) Giải phương trình: n 2 4 2nCâu VII.a (1 điểm): Chứng minh rằng với n Î N*, ta có: 2C2 n + 4C2 n + ... + 2 nC2 n = 4 n . 22. Theo chương trình nâng caoCâu VI.b (2 điểm): æ9 3ö 1) Trong mặt phẳng với hệ toạ độ Oxy, cho hình chữ nhật ABCD có diện tích bằng 12, tâm I ç ; ÷ và trung điểm è2 2ø M của cạnh AD là giao điểm của đường thẳng d: x - y - 3 = 0 với trục Ox. Xác định toạ độ của các điểm A, B, C, D biết yA > 0. log3 x 2 - 5 x + 6 + log 1 x - 2 > log 1 x +3 2) Giải bất phương trình: 3 3 2 -x + x + aCâu VII.b (1 điểm): Tìm a để đồ thị hàm số y = (C) có tiệm cận xiên tiếp xúc với đồ thị của hàm số (C¢): x+a y = x3 - 6 x2 + 8x - 3 . ============================Trần Sĩ Tùng Hướng dẫn:I. PHẦN CHUNGCâu I: 2) Phương trình hoành độ giao điểm của (Cm) và d: x 3 + 2 mx 2 + (m + 3) x + 4 = x + 4 (1) é x = 0 ( y = 4) Û x ( x 2 + 2 mx + m + 2) = 0 Û ê 2 ë x + 2mx + m + 2 = 0 (2) ì é m < -1 ...

Tài liệu được xem nhiều: