Danh mục

Đề kiểm tra giữa HK1 môn Toán lớp 11 năm 2018-2019 - THPT Thanh Miện - Mã đề 02

Số trang: 2      Loại file: pdf      Dung lượng: 121.62 KB      Lượt xem: 10      Lượt tải: 0    
Thư viện của tui

Phí lưu trữ: miễn phí Tải xuống file đầy đủ (2 trang) 0
Xem trước 2 trang đầu tiên của tài liệu này:

Thông tin tài liệu:

Đề kiểm tra giữa HK1 môn Toán lớp 11 năm 2018-2019 - THPT Thanh Miện - Mã đề 02 giúp các bạn học sinh có tài liệu ôn tập, luyện tập nhằm nắm vững được những kiến thức, kĩ năng cơ bản, đồng thời vận dụng kiến thức để giải các bài tập một cách thuận lợi.
Nội dung trích xuất từ tài liệu:
Đề kiểm tra giữa HK1 môn Toán lớp 11 năm 2018-2019 - THPT Thanh Miện - Mã đề 02TRƯỜNG THPT THANH MIỆNĐỀ KIỂM TRA MÔN TOÁN 11Năm học 2018 - 2019Thời gian làm bài: 45 phút;(25 câu trắc nghiệm)Mã đề thi 02Câu 1: Một hộp chứa 4 viên bi trắng, 5 viên bi đỏ và 6 viên bi xanh. Lấy ngẫu nhiên từ hộp ra 4 viên bi.Tính xác suất để 4 viên bi được chọn có đủ ba màu và số bi đỏ nhiều nhất:PC41C52C61.C154PC41C52C61.C152A.B.Câu 2: Số cách chọn 3 học sinh từ 5 học sinh làA. A53 .B. 3! .PC.C. C53 .C 41C53C62.C152C14C53C62P4C15D.D. 15 .Câu 3: Có bao nhiêu cách xếp 6 sách Văn khác nhau và 7 sách Toán khác nhau trên một kệ sách dài nếucác sách Toán phải xếp kề nhau?A. 6!.7! .B. 2.6!.7! .C. 7!7! .D. 13!.Câu 4: Bạn muốn mua một cây bút mực và một cây bút chì. Các cây bút mực có 8 màu khác nhau, cáccây bút chì cũng có 8 màu khác nhau. Như vậy bạn có bao nhiêu cách chọnA. 64 .B. 32 .C. 16 .D. 20 .Câu 5: Từ một hộp chứa ba quả cầu trắng và hai quả cầu đen lấy ngẫu nhiên hai quả. Xác suất để lấyđược cả hai quả trắng là:312106A.B..C..D..10303030Câu 6: Đề thi kiểm tra 15 phút có 10 câu trắc nghiệm mỗi câu có bốn phương án trả lời, trong đó có mộtphương án đúng, trả lời đúng mỗi câu được 1,0 điểm. Một thí sinh làm cả 10 câu, mỗi câu chọn mộtphương án ngẫu nhiên. Tính xác suất để thí sinh đó đạt từ 8,0 điểm trở lên.463436436163A. 10B. 10C. 4D. 4441010Câu 7: Gieo một con súc sắc cân đối và đồng chất ba lần liên tiếp. Gọi P là tích của ba số ở ba lần tung(mỗi số là số chấm trên mặt xuất hiện ở mỗi lần tung), tính xác suất sao cho P chia hết cho 6.829083133A.B.C.D.216216216216Câu 8: Có 5 nhà toán học nam, 3 nhà toán học nữ và 4 nhà vật lý nam. Lập một đoàn công tác gồm 3người cần có cả nam và nữ, có cả nhà toán học và vật lý thì có bao nhiêu cách.A. 120.B. 90.C. 80.D. 220.Câu 9: Một lớp có 40 học sinh gồm 25 nam và 15 nữ. Giáo viên chủ nhiệm muốn chọn 4 em trực cờđỏ. Hỏi có bao nhiêu cách chọn nếu ít nhất phải có một nam?4444413(cách).(cách).(cách).(cách).A. C40  C15B. C25C. C40  C15D. C25C15Câu 10: Từ nhà An đến nhà Bình có 7 con đường, từ nhà Bình đến nhà Cường có 5 con đường. Có baonhiêu cách đi từ nhà An đến nhà Cường, biết phải đi qua nhà Bình.A. 12B. 35C. 30D. 28Câu 11: Gieo ngẫu nhiên hai con súc sắc cân đối, đồng chất. Xác suất của biến cố “Tổng số chấm của haicon súc sắc bằng 7” là :1517A. .B.C. .D...1236636Câu 12: Một hội nghị bàn tròn có các phái đoàn 3 người Anh, 5 người Pháp và 7 người Mỹ. Hỏi có baonhiêu cách xếp chỗ ngồi cho các thành viên sao cho những người có cùng quốc tịch thì ngồi gần nhau.A. 3174012.B. 1418746.C. 7257600.D. 7293732Trang 1/1 - Mã đề thi 02Câu 13: Có 10 cặp vợ chồng đi dự tiệc. Tổng số cách chọn một người đàn ông và một người phụ nữtrong bữa tiệc phát biểu ý kiến sao cho hai người đó không là vợ chồng:A. 10.B. 100.C. 91.D. 90.A1 A2 ... A2 n nội tiếp trong đường tròn tâm O. Biết rằng số tam giác có đỉnh là 3trong 2n điểm A1 , A2 ,..., A2 n gấp 20 lần so với số hình chữ nhật có đỉnh là 4 trong 2n điểmCâu 14: Cho đa giác đềuA1 , A2 ,..., A2 n . Tìm n?A. 12B. 8C. 62Câu 15: Số hạng chứa x trong khai triển  x 2 5A. C167B. C16.D. 3161 làx 4 8C. C16.D. C1016 .Câu 16: Cho phép thử có không gian mẫu   1, 2, 3, 4,5, 6 . Các cặp biến cố không đối nhau là:A. E  1, 4, 6 và F  2,3,5 .B. A  1, 4 và B   3, 5, 6 .C.  và  .D. C 1, 4,5 và D  2,3, 6.Câu 17: Hội đồng quản trị của công ty X gồm 12 người. Hỏi có bao nhiêu cách bầu ra ba người vào ba vịtrí chủ tịch, phó chủ tịch và thư kí, biết khả năng mỗi người là như nhau.A. 220B. 1230C. 722D. 1320Câu 18: Từ các số 1, 2, 3, 4,5, 6, 7 lập được bao nhiêu số tự nhiên chẵn gồm 4 chữ số đôi một khácnhau:A. 360B. 523C. 343D. 347Câu 19: Sắp xếp năm bạn học sinh A, B, C, D, E vào một chiếc ghế dài có 5 chỗ ngồi. Số cách sắp xếpsao cho hai bạn A, B luôn ngồi đầu bàn là:A. 24B. 60C. 12D. 120Câu 20: Có thể lập được bao nhiêu số tự nhiên gồm 5 chữ số khác nhau lấy từ các số 0,1, 2 , 3, 4,5, 6 .A. 600 .B. 2160 .C. 720 .D. 2610 .Câu 21: Cho n là số nguyên dương thỏa mãn: A 2n  C 2n  C1n  4n  6. Hệ số của số hạng chứa x9 của khainntriển biểu thức P  x   1  x   x 1  x  bằng:A. 715B. 564C. 2456D. 275Câu 22: Cho A là một biến cố liên quan phép thử T. Mệnh đề nào sau đây là mệnh đề đúng?A. P ( A) là số lớn hơn 0.B. P ( A) là số nhỏ hơn 1. C. P ( A)  0  A   .D. P( A)  1  P A .Câu 23: Xếp ngẫu nhiên 6 chiếc xe gồm 1 xe xanh, 2 xe vàng, 3 xe đỏ (các xe cùng màu giống nhau)thành một hàng ngang. Xác suất để không có 2 chiếc xe cùng màu nào đứng cạnh nhau bằng11191A. .B. .C.D. ..15101806Câu 24: Cho tập A  1; 2;3; 4;5; 6 . Hỏi có bao nhiêu số tự nhiên gồm 8 chữ số lấy từ tập A mà có đúng3 chữ số 1, các chữ số còn lại đôi một khác nhau v ...

Tài liệu được xem nhiều: