Danh mục

Đề thi chọn học sinh giỏi môn Toán lớp 9 năm học 2012-2013 (Đề đề nghị) – Trường THCS Võ Thị Sáu

Số trang: 1      Loại file: pdf      Dung lượng: 104.13 KB      Lượt xem: 5      Lượt tải: 0    
Thư viện của tui

Phí tải xuống: miễn phí Tải xuống file đầy đủ (1 trang) 0
Xem trước 1 trang đầu tiên của tài liệu này:

Thông tin tài liệu:

Đề thi chọn học sinh giỏi môn Toán lớp 9 năm học 2012-2013 (Đề đề nghị) biên soạn bởi Trường THCS Võ Thị Sáu. Là tài liệu tham khảo hữu ích dành cho giáo viên và học sinh trong quá trình giảng dạy và học tập.
Nội dung trích xuất từ tài liệu:
Đề thi chọn học sinh giỏi môn Toán lớp 9 năm học 2012-2013 (Đề đề nghị) – Trường THCS Võ Thị SáuPHÒNG GD&ĐT ĐẠI LỘC ĐỀ THI HỌC SINH GIỎI LỚP 9 (NĂM HỌC 2012 - 2013) Môn: TOÁN (Thời gian: 150 phút) ĐỀ ĐỀ NGHỊ Họ và tên GV ra đề : Nguyễn Văn Tân Đơn vị : Trường THCS Võ Thị Sáu 5125  1Bài 1(2đ): Chứng minh rằng số N  là hợp số. 5 25  1Bài 2 (5đ): 2 3 2 3 a) Tính S   . 2 3 2 3 2 2 4 2 b) Cho B   a 2  2   8 a    48 (a  0)  a   a 1) Rút gọn B. 2) Tìm giá trị nhỏ nhất của B.Bài 3 (5đ): 1 1 a) Giải phương trình: x  x   x   2. 2 4 b) Chứng minh rằng nếu a, b, c là độ dài ba cạnh của một tam giác thì: a b c   2 bc ac abBài 4 (4đ): a) Cho tam giác ABC có BC=a, AC=b, AB=c nội tiếp đường tròn (O; R). Biết a2+b2+c2=8R2. Tam giác ABC là tam giác gì ? b) Cho góc xOy. Hai điểm A, B thuộc tia Ox; hai điểm C, D thuộc tia Oy. Tìm tập hợp những điểm M nằm trong góc xOy sao cho hai tam giác MAB và MCD có cùng diện tích ?Bài 5 (4đ): Cho tam giác ABC cân tại A. Từ H là trung điểm của BC, kẻ HI  AC. Gọi D làtrung điểm của HI. a) Chứng minh hai tam giác AHD và BCI đồng dạng. b) Chứng minh AD  BI. ========= HẾT =========

Tài liệu được xem nhiều:

Gợi ý tài liệu liên quan: