Đề thi thử đại học 2013 Môn Toán khối B Đề 12
Số trang: 3
Loại file: pdf
Dung lượng: 314.70 KB
Lượt xem: 10
Lượt tải: 0
Xem trước 2 trang đầu tiên của tài liệu này:
Thông tin tài liệu:
Tham khảo đề thi - kiểm tra đề thi thử đại học 2013 môn toán khối b đề 12, tài liệu phổ thông, ôn thi đh-cđ phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả
Nội dung trích xuất từ tài liệu:
Đề thi thử đại học 2013 Môn Toán khối B Đề 12 ĐỀ THI THỬ ĐẠI HỌC, CAO ĐẲNG 2013 Môn thi: TOÁN ĐỀ 12I. PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm)Câu I: (2 điểm) Cho hàm số y x3 3m2 x 2m (Cm). 1) Khảo sát sự biến thiên và vẽ đồ thị hàm số khi m = 1 . 2) Tìm m để (Cm) và trục hoành có đúng 2 điểm chung phân biệt.Câu II: (2 điểm) (sin 2 x sin x 4) cos x 2 1) Giải phương trình: 0 2sin x 3 2) Giải phương trình: 8x 1 2 3 2x 1 1 2 sin xdxCâu III: (1 điểm) Tính tích phân: I 0 (sin x cos x)3Câu IV: (1 điểm) Cho khối chóp S.ABC có SA (ABC), ABC vuông cân đỉnh C và SC = a . Tính góc giữa 2 mặt phẳng (SCB) và (ABC) để thể tích khối chóp lớn nhất.Câu V: (1 điểm) Tìm m để phương trình sau đây có đúng 2 nghiệm thực phân biệt: 2 x 2 x (2 x)(2 x) mII. PHẦN RIÊNG (3 điểm): A. Theo chương trình chuẩn:Câu VI.a: (2 điểm) 1) Trong mặt phẳng với hệ toạ độ Oxy, cho điểm M(3;1). Viết phương trình đường thẳng d đi qua M cắt các tia Ox, Oy tại A và B sao cho (OA+3OB) nhỏ nhất. 2) Trong không gian với hệ toạ độ Oxyz, cho hai điểm A(1;2;3) và B(3;4;1). Tìm toạ độ điểm M thuộc mặt phẳng (P): x y z 1 0 để MAB là tam giác đều.Câu VII.a: (1 điểm) Tìm hệ số của x 20 trong khai triển Newton của biểu thức n 2 1 1 1 2 1 1 x 5 , biết rằng: 0 Cn Cn Cn ... ( 1) n n Cn x3 2 3 n 1 13 B. Theo chương trình nâng cao:Câu VI.b: (2 điểm) 1) Trong mặt phẳng với hệ toạ độ Oxy, cho 4 điểm A(1;0), B(–2;4), C(–1;4), D(3;5). Tìm toạ độ điểm M thuộc đường thẳng ( ) : 3x y 5 0 sao cho hai tam giác MAB, MCD có diện tích bằng nhau. 2) Trong không gian với hệ toạ độ Oxyz, cho đường thẳng ( 1 ) có phương trình x 2t; y t; z 4 ; ( 2 ) là giao tuyến của 2 mặt phẳng ( ) : x y 3 0 và ( ) : 4 x 4 y 3z 12 0 . Chứng tỏ hai đường thẳng 1 , 2 chéo nhau và viết Trang 1 phương trình mặt cầu nhận đoạn vuông góc chung của 1 , 2 làm đường kính. 2 2Câu VII.b: (1 điểm) Cho hàm số y x (2m 1) x m m 4 . Chứng minh rằng với 2( x m) mọi m, hàm số luôn có cực trị và khoảng cách giữa hai điểm cực trị không phụ thuộc m. HƯỚNG DẪN GIẢI y coù CÑ, CTCâu I: 2) (Cm) và Ox có đúng 2 điểm chung phân biệt yCÑ 0 hoaëc yCT 0 m 1 (2cos x 1)(sin x cos x 2) 0Câu II: 1) PT x k2 2sin x 3 0 3 2) Đặt 2x u 0; 3 2 x 1 1 v. x 0 u3 1 2v ...
Nội dung trích xuất từ tài liệu:
Đề thi thử đại học 2013 Môn Toán khối B Đề 12 ĐỀ THI THỬ ĐẠI HỌC, CAO ĐẲNG 2013 Môn thi: TOÁN ĐỀ 12I. PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm)Câu I: (2 điểm) Cho hàm số y x3 3m2 x 2m (Cm). 1) Khảo sát sự biến thiên và vẽ đồ thị hàm số khi m = 1 . 2) Tìm m để (Cm) và trục hoành có đúng 2 điểm chung phân biệt.Câu II: (2 điểm) (sin 2 x sin x 4) cos x 2 1) Giải phương trình: 0 2sin x 3 2) Giải phương trình: 8x 1 2 3 2x 1 1 2 sin xdxCâu III: (1 điểm) Tính tích phân: I 0 (sin x cos x)3Câu IV: (1 điểm) Cho khối chóp S.ABC có SA (ABC), ABC vuông cân đỉnh C và SC = a . Tính góc giữa 2 mặt phẳng (SCB) và (ABC) để thể tích khối chóp lớn nhất.Câu V: (1 điểm) Tìm m để phương trình sau đây có đúng 2 nghiệm thực phân biệt: 2 x 2 x (2 x)(2 x) mII. PHẦN RIÊNG (3 điểm): A. Theo chương trình chuẩn:Câu VI.a: (2 điểm) 1) Trong mặt phẳng với hệ toạ độ Oxy, cho điểm M(3;1). Viết phương trình đường thẳng d đi qua M cắt các tia Ox, Oy tại A và B sao cho (OA+3OB) nhỏ nhất. 2) Trong không gian với hệ toạ độ Oxyz, cho hai điểm A(1;2;3) và B(3;4;1). Tìm toạ độ điểm M thuộc mặt phẳng (P): x y z 1 0 để MAB là tam giác đều.Câu VII.a: (1 điểm) Tìm hệ số của x 20 trong khai triển Newton của biểu thức n 2 1 1 1 2 1 1 x 5 , biết rằng: 0 Cn Cn Cn ... ( 1) n n Cn x3 2 3 n 1 13 B. Theo chương trình nâng cao:Câu VI.b: (2 điểm) 1) Trong mặt phẳng với hệ toạ độ Oxy, cho 4 điểm A(1;0), B(–2;4), C(–1;4), D(3;5). Tìm toạ độ điểm M thuộc đường thẳng ( ) : 3x y 5 0 sao cho hai tam giác MAB, MCD có diện tích bằng nhau. 2) Trong không gian với hệ toạ độ Oxyz, cho đường thẳng ( 1 ) có phương trình x 2t; y t; z 4 ; ( 2 ) là giao tuyến của 2 mặt phẳng ( ) : x y 3 0 và ( ) : 4 x 4 y 3z 12 0 . Chứng tỏ hai đường thẳng 1 , 2 chéo nhau và viết Trang 1 phương trình mặt cầu nhận đoạn vuông góc chung của 1 , 2 làm đường kính. 2 2Câu VII.b: (1 điểm) Cho hàm số y x (2m 1) x m m 4 . Chứng minh rằng với 2( x m) mọi m, hàm số luôn có cực trị và khoảng cách giữa hai điểm cực trị không phụ thuộc m. HƯỚNG DẪN GIẢI y coù CÑ, CTCâu I: 2) (Cm) và Ox có đúng 2 điểm chung phân biệt yCÑ 0 hoaëc yCT 0 m 1 (2cos x 1)(sin x cos x 2) 0Câu II: 1) PT x k2 2sin x 3 0 3 2) Đặt 2x u 0; 3 2 x 1 1 v. x 0 u3 1 2v ...
Tìm kiếm theo từ khóa liên quan:
bộ đề thi đại học 2013 cấu trúc đề thi đại học luyện thi đại học 2013 tài liệu ôn thi đại học bài tập trắc nghiệm đề thi thử đại học 2013Gợi ý tài liệu liên quan:
-
BÀI GIẢNG KINH TẾ CHÍNH TRỊ MÁC - LÊNIN - TS. NGUYỄN VĂN LỊCH - 5
23 trang 204 0 0 -
GIÁO TRÌNH CHỦ NGHĨA XÃ HỘI KHOA HỌC - TS. NGUYỄN ĐỨC BÁCH - 8
18 trang 74 0 0 -
7 trang 71 0 0
-
GIÁO TRÌNH TÀI CHÍNH TIỀN TỆ - LƯU THÔNG TIỀN TỆ - THS. TRẦN ÁI KẾT - 5
24 trang 69 0 0 -
150 CÂU HỎI VÀ BÀI TẬP TN ÔN THI ĐH-CĐ
27 trang 69 0 0 -
4 trang 62 2 0
-
GIÁO TRÌNH TÀI CHÍNH TIỀN TỆ - LƯU THÔNG TIỀN TỆ - THS. TRẦN ÁI KẾT - 1
24 trang 54 0 0 -
CẨM NANG NGÂN HÀNG - MBA. MẠC QUANG HUY - 4
11 trang 44 0 0 -
CHỨNH MINH BA ĐIỂM THẲNG HÀNG NHỜ SỬ DỤNG ĐỊNH LÝ THALES
4 trang 41 0 0 -
Khóa luận tốt nghiệp đại học: Hệ thống câu hỏi và bài tập trắc nghiệm phần quang lượng tử
62 trang 36 0 0