Danh mục

ĐỀ THI THỬ ĐẠI HỌC ĐH SƯ PHẠM HÀ NỘI

Số trang: 5      Loại file: pdf      Dung lượng: 213.79 KB      Lượt xem: 8      Lượt tải: 0    
Hoai.2512

Phí tải xuống: miễn phí Tải xuống file đầy đủ (5 trang) 0
Xem trước 2 trang đầu tiên của tài liệu này:

Thông tin tài liệu:

Tham khảo tài liệu đề thi thử đại học đh sư phạm hà nội, tài liệu phổ thông, ôn thi đh-cđ phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả
Nội dung trích xuất từ tài liệu:
ĐỀ THI THỬ ĐẠI HỌC ĐH SƯ PHẠM HÀ NỘI ĐỀ THI THỬ ĐẠI HỌC – CAO ĐẲNG 2011ĐẠI HỌC SƯ PHẠM HÀ NỘI MÔN: TOÁN- KHỐI A KHOA TOÁN-TIN Thời gian làm bài: 180 phút ( không kể thời gian giao đề ) ----------------------------------------------------------------------------------------------------------------------------------------------------------A. PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm ) 2x 1Câu I: (2,0 điểm) Cho hàm số: y  (C). x 1 1. Khảo sát sự biến thiên và vẽ đồ thị (C). 2. Gọi I là giao điểm của hai tiệm cận, M là một điểm bất kì trên (C), tiếp tuyến của (C) tại M cắt các tiệm cận tại A, B. Chứng minh rằng diện tích tam giác IAB không đổi khi M thay đổi trên (C).Câu II: (2,0 điểm) sin 3 x.sin 3 x  cos3 x.cos3 x 1  1. Giải phương trình   8   tan  x   .tan  x   6 3   2. Giải phương trình 1  1  x 2  1  x   1  x    2  1  x 2 . 3 3     1  Câu III. (1,0 điểm) Tính tích phân I  x ln x 2  x  1 dx .  0 a3 , góc BAD bằng 600 . GọiCâu IV. (1,0 điểm) Cho hình hộp đứng ABCD.A’B’C’D’ có AB  AD  a , AA  2M, N lần lượt là trung điểm của cạnh A’D’ và A’B’. Chứng minh AC’ vuông góc với mặt phẳng (BDMN) và tính thểtích khối đa diện AA’BDMN theo a .Câu V. (1,0 điểm) Chứng minh rằng với mọi số thực dương a, b, c thỏa mãn a 2  b 2  c 2  1 , ta có:a5  2a3  a b5  2b 3  b c5  2c 3  c 2 3    . b2  c 2 c2  a2 a2  b2 3B. PHẦN RIÊNG (3,0 ĐIỂM):Thí sinh chỉ được làm một trong hai phần (phần A hoặc B)I. Theo chương trình ChuẩnCâu VI.a (2,0 điểm) 1. Trong mặt phẳng với hệ tọa độ Oxy, cho hình chữ nhật ABCD có diện tích bằng 12, tâm I là giao đi ểm của hai đường thẳng: d1 : x – y – 3 = 0, d2 : x + y – 6 = 0. Trung điểm một cạnh là giao điểm của d1 và tia Ox. Tìm tọa độ các đỉnh của hình chữ nhật. x  14 y z  5  2. Trong không gian với hệ tọa độ Oxyz, cho điểm I(1;1;1) và đường thẳng d: . Viết phương 2 4 1 trình mặt cầu (S) tâm I và cắt d tại hai điểm A, B sao cho độ dài đoạn thẳng AB bằng 16. n 1  2Câu VII.a (1,0 điểm) Tìm hệ số chứa x trong khai triển:  x   , biết n là số nguyên dương thỏa mãn: 4 2 x  2 n1 n 6560 22 1 23 2 0 2Cn  Cn  Cn  ...  Cn  . ...

Tài liệu được xem nhiều: