Danh mục

Đề thi thử đại học lần 2 năm 2011 môn toán số 4

Số trang: 7      Loại file: pdf      Dung lượng: 240.73 KB      Lượt xem: 11      Lượt tải: 0    
tailieu_vip

Phí tải xuống: 5,000 VND Tải xuống file đầy đủ (7 trang) 0
Xem trước 2 trang đầu tiên của tài liệu này:

Thông tin tài liệu:

Tham khảo tài liệu đề thi thử đại học lần 2 năm 2011 môn toán số 4, tài liệu phổ thông, ôn thi đh-cđ phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả
Nội dung trích xuất từ tài liệu:
Đề thi thử đại học lần 2 năm 2011 môn toán số 4 Generated by Foxit PDF Creator © Foxit Softwarehttp://ductam_tp.violet.vn/ http://www.foxitsoftware.com For evaluation only. ĐỀ THI THỬ ĐẠI HỌC LẦN 2 - NĂM HỌC 2011 Môn: TOÁN (Thời gian : 180 phút)PHẦN CHUNG CHO TẤT CẢ CÁC THÍ SINHCâu I (2 điểm): 3x  4 1).Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số : y  . Tìm điểm thuộc (C) cách đều x22 đường tiệm cận .  2  0; 3  . 2).Tìm các giá trị của m để phương trình sau có 2 nghiệm trên đoạn   sin6x + cos6x = m ( sin4x + cos4x )Câu II (2 điểm): sin 3x  sin x  0; 2  của phương trình :  sin 2x  cos2x 1).Tìm các nghiệm trên 1  cos2x 3 x  34  3 x  3  1 2).Giải phương trình:Câu III (1 điểm): Cho chóp S.ABC có đáy ABC là tam giác vuông tại C, AC = 2, BC = 4. Cạnh bênSA = 5 vuông góc với đáy. Gọi D là trung điểm cạnh AB. 1).Tính góc giữa AC và SD; 2).Tính khoảng cách giữa BC và SD.Câu IV (2 điểm):  2 sin x  cosx  1 dx I= 1 ).Tính tích phân: sin x  2cosx  3 0 2 ). a.Giải phương trình sau trên tập số phức C : | z | - iz = 1 – 2i b.Hãy xác định tập hợp các điểm trong mặt phẳng phức biểu diễn các số phức z thoả mãn : 1 ----------------------------- Hết enerated by Foxit PDF Creator © Foxit Software G ----------------------------- http://www.foxitsoftware.com For evaluation only. Cán bộ coi thi không giải thích gì thêm.trêng thpt hËu léc 2 ®¸p ¸n ®Ò thi thö ®¹i häc lÇn 1 n¨m häc 2009-2010 M«n thi: to¸n Thêi gian lµm bµi: 180 phót, kh«ng kÓ thêi gian giao ®Ò C©u Néi dung §iÓm  Kh¶o s¸t vµ vÏ §THS - TX§: D = R {2} - Sù biÕn thiªn: + ) Giíi h¹n : Lim y  Lim y  3 nªn ®êng th¼ng y = 3 lµ tiªm cËn 0,25 x  x  ngang cña ®å thÞ hµm sè +) Lim y  ; Lim y   . Do ®ã ®êng th¼ng x = 2 lµ tiÖm cËn ®øng   x2 x2 cña ®å thÞ hµm sè +) B¶ng biÕn thiªn: 2 Ta cã : y’ =  < 0 , x  D 2  x  2 0,25 x 2   - - y’ 3  y 3  Hµm sè nghÞch biÕn trªn mçi kho¶ng  ;2  vµ - §å thÞ + Giao ®iÓm víi trôc tung : (0 ;2) I + Giao ®iÓm víi trôc hoµnh : ( 4/3 ; 0) 2.0® 0,25 + §THS nhËn giao ®iÓm I(2 ;3) cña hai ®êng tiÖm cËn lµm t©m ®èi xøng ...

Tài liệu được xem nhiều: