Danh mục

Đề thi thử Đại học lần II năm học 2013-2014 môn Toán (khối B) - Trường THPT chuyên Hạ Long

Số trang: 6      Loại file: pdf      Dung lượng: 983.78 KB      Lượt xem: 8      Lượt tải: 0    
tailieu_vip

Xem trước 2 trang đầu tiên của tài liệu này:

Thông tin tài liệu:

Đề thi thử Đại học lần II năm học 2013-2014 môn Toán (khối B) - Trường THPT chuyên Hạ Long gồm có hai phần thi là phần chung và phần riêng cùng với phần nâng cao với các câu hỏi tự luận có kèm đáp án và hướng dẫn giải chi tiết.
Nội dung trích xuất từ tài liệu:
Đề thi thử Đại học lần II năm học 2013-2014 môn Toán (khối B) - Trường THPT chuyên Hạ Long TRƯỜNG THPT CHUYÊN HẠ LONG ĐỀ THI THỬ ĐẠI HỌC LẦN II NĂM HỌC 2013-2014 ------------------- MÔN TOÁN – KHỐI BPHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm) Câu I (2,0 điểm) Cho hàm số y = f ( x ) = − x + 3mx − 2 với m là tham số thực. 3 1. Khảo sát sự biến thiên và vẽ đồ thị của hàm số với m = 1 . 1 2. Tìm các giá trị của m để bất phương trình f ( x ) ≤ − 3 đúng với mọi x ≥ 1 . x Câu II (2,0 điểm) 1. Giải phương trình lượng giác 3cot 2 x + 2 2 sin 2 x = (2 + 3 2)cos x 2. Giải bất phương trình 3x 2 − 7 x + 3 + x 2 − 3x + 4 > x 2 − 2 + 3x 2 − 5 x − 1 π 4 cos 2 x Câu III (1,0 điểm) Tính tích phân I = ∫ (sin x + cos x + 2)3 dx 0 Câu IV (1,0 điểm) Cho lăng trụ tam giác đều ABC.A’B’C’ cạnh đáy bằng a ; chiều cao bằng 2a . Mặt phẳng (P) qua B’ và vuông góc A’C chia lăng trụ thành hai khối. Tính tỉ lệ thể tích của hai khối đó và tính khoảng cách từ điểm A đến (P). 1 Câu V (1,0 điểm) Cho các số thực a, b, c thỏa mãn 0 < a, b, c < và a + 2b + 3c = 2 . Chứng minh rằng 2 1 2 9 + + ≥ 54 a (4b + 6c − 3) b(3c + a − 1) c(2a + 4b − 1)PHẦN RIÊNG (3,0 điểm) Thí sinh chỉ được làm một trong hai phần (phần A hoặc B) A. Theo chương trình Chuẩn Câu VI.a (2,0 điểm) 1.Trong mặt phẳng tọa độ Oxy cho đường tròn (C) x + y − x − 9 y + 18 = 0 và hai điểm 2 2 A(4;1); B (3; −1) . Các điểm C; D thuộc đường tròn (C) sao cho ABCD là hình bình hành. Viết phương trình đường thẳng CD. 2. Trong không gian tọa độ Oxyz , cho điểm A(4;0;0) ; B( x0 ; y0 ;0) với x0 ; y0 là các số thực dương sao cho OB = 8 và góc AOB = 60 . Xác định tọa độ điểm C trên trục Oz để thể tích tứ diện OABC 0 bằng 8 . Câu VII.a (1,0 điểm) Cho số tự nhiên n ≥ 2 , chứng minh đẳng thức (Cn0 )2 + (Cn1 ) 2 + ... + (Cnn )2 = C2nn B. Theo chương trình Nâng cao Câu VI.b (2,0 điểm) 1. Trong mặt phẳng tọa độ Oxy cho hình chữ nhật ABCD có các đường thẳng AB, AD đi qua M (2;3) và 5 3 N (−1;2) . Viết phương trình các đường thẳng BC và CD biết tâm của hình chữ nhật là điểm I ( ; ) và 2 2 AC = 26 . 2. Trong không gian tọa độ Oxyz , cho C(0;0;2); K(6;-3;0). Viết phương trình mặt phẳng (P) qua C, K cắt trục Ox , Oy tại hai điểm A, B sao cho thể tích tứ diện OABC bằng 3. Câu VII.b (1,0 điểm) Giải phương trình log 3 ( x + 1) = log 2 x . Cảm ơnbạn(gunshot96@gmail.com)đãgửitới www.laisac.page.tl ĐÁP ÁN VÀ BIỂU ĐIỂMCÂU ĐÁP ÁN B.ĐIỂM I.1 Hàm số là y = − x + 3 x − 2 3 a. TXĐ D = ℝ 0.25 b. Giới hạn lim y = +∞; lim y = −∞ x →−∞ x →+∞ c. Chiều biến thiên y = −3x + 3 ; y = 0 ⇔ x = ±1 2 Hàm số nghịch biến trên các khoảng ( −∞; −1);(1; +∞) và đồng biến trên ( −1;1) 0.25 Hàm số đạt cực tiểu tại x = −1; yCT = −4 , đạt cực đại tại x = 1; yCÐ = 0 d. Bảng biến thiên x −∞ −1 1 +∞ y’ - 0 + 0 - 0 +∞ 0.25 y -4 −∞ e. Đồ thị Điểm cắt trục hoành (1;0); (-2;0). Điểm cắt trục tung (0;-2) y -2 -1 1 x O -2 0.25 -4 ...

Tài liệu được xem nhiều: