Danh mục

Đề thi thử đại học môn toán năm 2012_Đề số 165

Số trang: 3      Loại file: doc      Dung lượng: 168.00 KB      Lượt xem: 10      Lượt tải: 0    
Hoai.2512

Phí lưu trữ: miễn phí Tải xuống file đầy đủ (3 trang) 0
Xem trước 2 trang đầu tiên của tài liệu này:

Thông tin tài liệu:

Tham khảo đề thi - kiểm tra đề thi thử đại học môn toán năm 2012_đề số 165, tài liệu phổ thông, ôn thi đh-cđ phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả
Nội dung trích xuất từ tài liệu:
Đề thi thử đại học môn toán năm 2012_Đề số 165 ĐỀ THI THỬ ĐẠI HỌC, CAO ĐẲNG Môn thi : TOÁN (ĐỀ 165)I. PHẦN CHUNG CHO TẤT CẢ THÍ SINH: ( 7 điểm) 2x −1 Cho hàm số y =Câu I: (2 điểm) x +1 1. Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. 2. Chứng minh rằng đường thẳng d: y = - x + 1 là truc đối xứng của (C).Câu II: (2 điểm) x 4cos3xcosx - 2cos4x - 4cosx + tan t anx + 2 1 Giải phương trình: 2 =0 2sinx - 3 2. Giải bất phương trình: x 2 − 3 x + 2.log 2 x 2 x 2 − 3 x + 2.(5 − log x 2)Câu III: ( 1 điểm). Gọi (H) là hình phẳng giới hạn đồ thị (C) của hàm sô y = x3 – 2x2 + x + 4 và tiếp tuyến của (C) tại điểm có hoành độ x0 = 0. Tính thể tích của vật thể tròn xoay được tạo thành khi quay hình phẳng (H) quanh trục Ox.Câu IV: (1điểm) Cho hình lặng trụ tam giác đều ABC.A’B’C’ có cạnh đáy bằng a. Biết khoảngcách a 15 giữa hai đường thẳng AB và A’C bằng . Tính thể tích của khối lăng trụ. 5Câu V:(1điểm) Tìm m để hệ phương trình sau có nghiệm: (2 x + 1)[ln(x + 1) - lnx] = (2y + 1)[ln(y + 1) - lny] (1) y-1 − 2 4 ( y + 1)( x − 1) + m x + 1 = 0 (2)II. PHẦN RIÊNG (3 điểm): Thí sinh chỉ làm một trong hai phần (Phần 1 hoặc phần 2) Phần 1: Theo chương trình chuẩnCâu VI.a: ( 2 điểm). 1. Trong mặt phẳng Oxy cho đường tròn (C): x2 + y2 = 1; và phương trình: x2 + y2 – 2(m + 1)x + 4my – 5 = 0 (1) Chứng minh rằng phương trình (1) là phương trình của đường tròn với mọi m.Gọi các đường tròn tương ứng là (Cm). Tìm m để (Cm) tiếp xúc với (C). x −1 y + 2 z = = và mặt phẳng (P): 2x + y – 2z 2. Trong không gian Oxyz cho đường thẳng d: 1 1 1 + 2 = 0. Lập phương trình mặt cầu (S) có tâm nằm trên d, tiếp xúc với mặt phẳng (P) và đi qua điểm A(2; - 1;0)Câu VII.b: ( 1 điểm). Cho x; y là các số thực thoả mãn x2 + y2 + xy = 1. Tìm giá trị lớn nhất vàgiá trị nhỏ nhất của biểu thức P = 5xy – 3y2 Phần 2: Theo chương trình nâng cao:Câu VI.b: ( 2 điểm). 1.Trong không gian Oxyz cho điểm A(3;2;3) và hai đường thẳng x −2 y −3 z −3 x −1 y − 4 z − 3 = = = = . Chứng minh đường thẳng d1; d2 và điểm A cùngd1 : và d 2 : −2 −2 1 1 1 1nằm trong một mặt phẳng. Xác định toạ độ các đỉnh B và C của tam giác ABC biết d1 chứa đườngcao BH và d2 chứa đường trung tuyến CM của tam giác ABC. 1� �2.Trong mặt phẳng Oxy cho elip (E) có hai tiêu điểm F1 (− 3;0); F2 ( 3;0) và đi qua điểm A � 3; �. 2 � �Lập phương trình chính tắc của (E) và với mọi điểm M trên elip, hãy tính biểu thức: P = F1M2 + F2M2 – 3OM2 – F1M.F2MCâu VII.b:( 1 điểm). Tính giá trị biểu thức: S = C2010 − 3C2010 + 32 C2010 + ... + ( −1) k C2010 + ... + 31004 C2010 − 31005 C2010 0 2 4 2k 2008 2010 1 ------------------------------------Hết -------------------------------------- Hướng dẫn giải ĐỀ THI THỬ ĐẠI HỌC, CAO ĐẲNG Môn thi : TOÁN (ĐỀ 165)Câu I: x = X −1 2. Giao điểm hai tiệm cận I(- 1;2) . Chuyển hệ trục toạ độ Oxy --> IXY: y =Y +2 3 Hàm số đã cho trở thành : Y = ...

Tài liệu được xem nhiều: