Thông tin tài liệu:
Tham khảo tài liệu đề thi thử đh môn toán - khối a_ thpt chu văn an củng cố thêm kiến thức Toán học các cấu trúc đề thi đại học, cùng ôn tập và rèn luyện đi làm bài thi đạt điểm cao.
Nội dung trích xuất từ tài liệu:
Đề thi thử ĐH môn Toán - Khối A_ THPT Chu Văn AnĐỀ THI THỬ MÔN TOÁN NĂM 2010============================= SỞ GD& ĐT HÀ NỘI ĐỀ THI THỬ ĐẠI HỌC ĐỢT I NĂM HỌC 2009 – 2010TRƯỜNG THPT CHU VĂN AN MÔN TOÁN – KHỐI A------------------------------------------ Thời gian làm bài: 180 phút ( không kể thời gian phát đề ) =========================================== A. PHẦN CHUNG ( Dành cho tất cả các thí sinh) Câu I (2 điểm). Cho hàm số y = x3 – 3x + 2 (C) 1. Khảo sát sự biến thiên và vẽ đồ thị của hàm số. 2. Tìm tọa độ điểm M thuộc đường thẳng (d) có phương trình y = - 3x + 2 sao cho từ M kẻ được hai tiếp tuyến đến đồ thị (C) và hai tiếp tuyến đó vuông góc với nhau. Câu II (2 điểm) x2 + 2 + y2 + 3 + x + y = 5 1. Giải hệ phương trình: x2 + 2 + y2 + 3 − x − y = 2 2. Giải phương trình. 1 + sin x – cos x – sin 2x + cos 2x = 0 1 dx Câu III (1 điểm). Tính tích phân: ∫ 0 1+ 1− x 2 Câu IV (1 điểm). Cho khối chóp S.ABC có SA = a, SB = b, SC = c, ∠ ASB = 600 , ∠ BSC = 900 , ∠ CSA = 1200. Tính thể tích khối chóp S.ABC. Câu V (1 điểm). Cho ba số dương a, b, c thỏa mãn điều kiện : ab + bc + ca = 2abc. 1 1 1 1 Chứng minh rằng: + + 2 ≥ a (2a − 1) 2 b(2b − 1) 2 c(2c − 1) 2 B. PHẦN TỰ CHỌN ( Mỗi thí sinh chỉ chọn một trong hai phần: Phần 1 hoặc Phần 2) Phần 1: Câu VI a (2 điểm) 1. Trong mặt phẳng tọa độ Oxy cho đường thẳng ( ∆ ): x + y – 1 = 0, các điểm A( 0; - 1), B(2;1). Tứ giác ABCD là hình thoi có tâm nằm trên ( ∆ ). Tịm tọa độ các điểm C, D. 2. Trong không gian tọa độ Oxyz cho điểm A(0;0;2) và đường thẳng ( ∆ ) có phương trình tham số: x = 0; y = t; z = 2. Điểm M di động trên trục hoành, điểm N di động trên ( ∆ ) sao cho: OM + AN = MN. Chứng minh đường thẳng MN tiếp xúc với một mặt cầu cố định. Câu VII a (1 điểm). Tìm các giá trị của a thỏa mãn: 3x + (a – 1).2x + (a – 1) > 0, ∀x ∈ R . Phần 2: Câu VI b (2 điểm) 5 1 1. Trong mặt phẳng tọa độ Oxy cho tam giác ABC trọng tâm G( ;− ), đường tròn đi qua trung 3 3 điểm các cạnh có phương trình x2 + y2 – 2x + 4y = 0. Hãy tìm phương trình đường tròn ngoại tiếp tam giác ABC. 2. Trong không gian tọa độ Oxyz cho hai điểm A(1; - 2; 3), B(2; - 1;2) và đường thẳng ( ∆ ): x y −1 z − 6 = = . Tìm tọa độ của điểm M trên ( ∆ ) sao cho diện tích tam giác MAB nhỏ nhất. 1 2 3 z −1 z − 2i Câu VII b (1 điểm). Tìm số phức z thỏa mãn đồng thời hai điều kiện: = 1, = 2. z −3 z+i ---------------------Hết---------------------=========================================ST: Vũ Phấn ( Yên Sở - Hoàng Mai – Hà Nội)CĐ: 0436.45.35.91; 02413.707.289 , DĐ: 01236.575.369.ĐỀ THI THỬ MÔN TOÁN NĂM 2010=============================Hướng dẫn giải:Câu I: 1. Tự làm. 2. Gọi M(a;b) là điểm cần tìm. M thuộc (d) nên b = -3a + 2. Tiếp tuyến của đồ thị ( C) tại điểm (x0;y0) là: y = (3x02 – 3)(x – x0) + x03 – 3x0 +2. Tiếp tuyến đi qua M(a;b) ⇔ - 3a + 2 = (3x02 – 3)( a – x0) + x03 – 3x0 + 2 ⇔ 2x03 – 3ax02 = 0 ⇔ x0 = 0 hoặc x0 = 3a/2.. 27 a 2 Có hai tiếp tuyến đi qua M với hệ số góc là k1 = f ’(0) = -3 và k2 =f ‘(3a/2) = -3. 4 2 10 Hai tiếp tuyến này vuông góc với nhau ⇔ k1.k2 = - 1 ⇔ a2 = 40/81 ⇔ a = ± . 9 2 10 2 10 Vậy có hai điểm thỏa mãn đề bài là: M( ± ...