Danh mục

Đề thi thử toán - số 3 năm 2011

Số trang: 3      Loại file: doc      Dung lượng: 174.50 KB      Lượt xem: 19      Lượt tải: 0    
tailieu_vip

Phí tải xuống: miễn phí Tải xuống file đầy đủ (3 trang) 0
Xem trước 2 trang đầu tiên của tài liệu này:

Thông tin tài liệu:

Tham khảo tài liệu đề thi thử toán - số 3 năm 2011, tài liệu phổ thông, ôn thi đh-cđ phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả
Nội dung trích xuất từ tài liệu:
Đề thi thử toán - số 3 năm 2011 Đề số 3I. PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm) Cho hàm số y = x 3 − 3 x 2 + 1 có đồ thị (C).Câu I: (2 điểm) 1. Khảo sát sự biến thiên và vẽ đồ thị (C). 2. Tìm hai điểm A, B thuộc đồ thị (C) sao cho tiếp tuyến của (C) tại A và B song song v ới nhau và độ dài đoạn AB = 4 2 .Câu II: (2 điểm) 1 1 log 2 (x + 3) + log4(x − 1)8 = 3log8(4x ) . 1. Giải phương trình: 2 4 �π� 0; 2. Tìm nghiệm trên khoảng � �của phương trình: � 2� π � 3π � � x� � � 4sin2 � − � 3sin� − 2x � 1+ 2cos2 � − π − = x � � 2� 2 � 4� � �Câu III: (1 điểm) Cho hàm số f(x) liên tục trên R và f (x ) + f (− x ) = cos4 x với mọi x R. Tính: π 2 f ( x ) dx . I= −π 2Câu IV: (1 điểm) Cho hình chóp S.ABCD có đáy ABCD là một hình vuông tâm O. Các m ặt bên (SAB) và (SAD) vuông góc với đáy (ABCD). Cho AB = a, SA = a 2 . Gọi H, K lần lượt là hình chiếu của A trên SB, SD .Tính thể tích khối chóp O.AHK.Câu V: (1 điểm) Cho bốn số dương a, b, c, d thoả mãn a + b + c + d = 4 . a b c d + + + 2 Chứng minh rằng: 1+ b2c 1+ c 2d 1+ d 2a 1+ a 2bII. PHẦN RIÊNG (3 điểm) A. Theo chương trình chuẩn.Câu VI.a: (2 điểm) 3 1) Trong mặt phẳng với hệ toạ độ Oxy, cho tam giác ABC có di ện tích b ằng , A(2;–3), 2 B(3;–2). Tìm toạ độ điểm C, biết điểm C nằm trên đường thẳng (d): 3x – y – 4 = 0. 2) Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(2;4;1),B(–1;1;3) và mặt phẳng (P): x – 3y + 2z – 5 = 0. Viết phương trình m ặt phẳng (Q) đi qua hai đi ểm A, B và vuông góc với mặt phẳng (P).Câu VII.a: (1 điểm) Tìm các số thực b, c để phương trình z2 + bz + c = 0 nhận số phức z = 1 + i làm một nghiệm. B. Theo chương trình nâng caoCâu VI.b: (2 điểm) 1) Trong mặt phẳng với hệ toạ độ Oxy, cho tam giác ABC có trọng tâm G( −2, 0) và phương trình các cạnh AB, AC theo thứ tự là: 4x + y + 14 = 0; 2x + 5y − 2 = 0 . Tìm tọa độ các đỉnh A, B, C. 2) Trong không gian với hệ toạ độ Oxyz, cho các điểm A(2,0,0); B(0,4,0); C(2,4,6) và 6x − 3y + 2z = 0 . Viết phương trình đường thẳng ∆ // (d) và cắt các đường thẳng (d) 6x + 3y + 2z − 24 = 0 đường thẳng AB, OC.Câu VII.b: (1 điểm) Giải phương trình sau trong tập số phức: z 4 ヨ z3 + 6z 2 ヨ 8z ヨ16 = 0 . Hướng dẫn Đề sô 3 www.VNMATH.comCâu I: 2) Giả sử A(a; a3 − 3a 2 + 1), B(b; b3 − 3b 2 + 1) (a ≠ b) Vì tiếp tuyến của (C) tại A và B song song suy ra y (a) = y (b) ⇔ (a − b)(a + b − 2) = 0 ⇔ a + b − 2 = 0 ⇔ b = 2 – a ⇒ a ≠ 1 (vì a ≠ b). AB 2 = (b − a)2 + (b3 − 3b2 + 1− a3 + 3a2 − 1)2 = 4(a − 1)6 − 24(a − 1)4 + 40(a − 1)2 a = 3� b = −1 AB = 4 2 ⇔ 4(a − 1)6 − 24(a − 1)4 + 40(a − 1)2 = 32 ⇔ a = −1� b = 3 ⇒ A(3; 1) và B(–1; –3)Câu II: 1) (1) ⇔ (x + 3) x − 1 = 4x ⇔ x = 3; x = −3+ 2 3 5π 2π x= +k (k Z ) (a) � π� π � � 18 3 2) (2) ⇔ sin� x − � sin� − x �⇔ = 2 5π 3� 2 � � � + l 2π (l Z ) (b) x= 6 �π� 5π �; � ên x= . Vì x 0 n � 2� 18 π π π π − 2 2 2 2 � ( x ) dx = � ( −t ) ( −dt ) = � ( −t ) dt = � ( − x ...

Tài liệu được xem nhiều: