Danh mục

Đề thi thử tốt nghiệp THPT môn Toán - THPT Nguyễn Trãi

Số trang: 5      Loại file: pdf      Dung lượng: 202.06 KB      Lượt xem: 13      Lượt tải: 0    
Jamona

Phí lưu trữ: miễn phí Tải xuống file đầy đủ (5 trang) 0
Xem trước 2 trang đầu tiên của tài liệu này:

Thông tin tài liệu:

Tham khảo đề thi thử tốt nghiệp THPT môn Toán - THPT Nguyễn Trãi với các dạng bài tập đa dạng theo cấu trúc chung của đề thi tốt nghiệp 2014 sẽ là tài liệu hay giúp bạn tự ôn tập và rèn luyện để làm bài thi tốt nghiệp đạt điểm cao.
Nội dung trích xuất từ tài liệu:
Đề thi thử tốt nghiệp THPT môn Toán - THPT Nguyễn TrãiTRƯỜNG THPT NGUYỄN TRÃIĐỀ THAM KHẢO THI TỐT NGHIỆP THPTMÔN: TOÁN - Thời gian: 150 phútNăm hoc 2013 - 2014I. PHẦN CHUNG ( 7 điểm)Câu 1 (3 điểm) Cho hàm số y  x 3  3x 2  4 có đồ thị (C) 1. Khảo sát sự biến thiên và vẽ đồ thị (C) 2. Biện luận theo m số nghiệm của phương trình x3  3 x 2  1  m  0Câu 2 (3 điểm) 2 1. Giải các phương trình: 2 log 5 x  3log 1 x  5 5  /2 2 2. Tính tích phân: J=  (3cos x  1)s inxdx  /3 ex 3. Tìm GTLN, GTNN của hàm số y  trên đoạn [ln2,ln4] ex  eCâu 3 (1 điểm) Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A,trung tuyến AM=a, cạnh SA vuông góc với mặt phẳng (ABC), tam giác SBCđều. Tính thể tích của khối chóp S.ABC.II. PHẦN RIÊNG( 3 điểm)( Thí sinh chỉ dược chọn một trong hai phần ( phần 1 hoặc phàn 2))1) Theo chương trình chuẩn.Câu 4a (2 điểm) Trong không gian Oxyz cho hai đường thẳng x  0 x  2 y  3. z  1 d 1:   vàd2  y  1  t  2 2 1  z  5  2t  1. Viết phương trình mặt phẳng  qua gốc O và d1 2. Chứng minh d1 và d2 chéo nhau 3. Viết phương trình mặt phẳng  song song và cách đều d1 , d2Câu 5b (1 điểm) Tìm phần thực, phần ảo, số phức liên hợp của số phức: z = (4 - 2i)2 – (1+2i)32) Theo chương trình nâng cao.Câu 4b (2 điểm) Trong không gian Oxyz cho mặt phẳng(  ) 2y - z -1 =0 x 1 y  2 zvà đường thẳng d   3 1 2 1. Viết phương trình đường thẳng  qua A (1; -2; 0) và vuông góc với (  ) 2. Chứng minh d song song (  ). 3. Viết phương trình đường thẳng d’ đối xứng với d qua (  )Câu 5b(1 điểm). Cho số phức z = 1 -2i (x, y  R) . Tìm phần thực và phần ảo của số phức z2 – 2z + 4i .Đáp án - Thang điểmA)PHẦN CHUNG (7 điểm) Câu Đáp án ĐiểmCâu I 1. (2đ)(3 điểm) TXĐ: D=R 0.25 y  3x2  6 x 0.25 x  0 0.25 y 0    x  2 lim y  ; lim y   0.5 x  x  + BBT x  -2 0 + y’ + 0 - 0 + y 0   -4 ( Nếu không tính giới hạn đồng thời ở dòng cuối của BBT thiếu dấu  hoặc  thì trừ 0.25 ) Hàm số đồng biến trong  ; 2  và  0;   0.25 hàm số nghịch biến trong  2;0  Cực trị: Hàm số đạt CĐ tại x  2 ; yCĐ = 0 Hàm số đạt CT tại x =0; yCT = -4 Đồ thị: - các điểm CĐ, CT 0.5 - Vẽ đúng dạng, đồ thị đối xứng 2. ( 1điểm) Biến đổi phương trình thành: x 3  3x 2  4  m  5(*) 0.25 - Số nghiệm của (*) là số giao điểm của (C) và đường thẳng (d) y = m -5 Biện luận đúng các trường hợp 0.5Câu II 1. (1điểm)(3 điểm) Đk: x> 0 0.25 2 pt  2 log 5 x  3log 5 x  5 0.25 t  1 0.25 Đặt t = log 5 x có pt 2t  3t  5  0   5 2 t   2 Kết quả x = 1/5 ; x = 5 5/ 2 0.25 2.(1điểm) Đặt t = cosx  dt = -sinx dx , đổi cận 0.25 0 1/ 2 0.25 J =   (3t 2  1)dt =  (3t 2  1)dt 1/ 2 0 ...

Tài liệu được xem nhiều: