Danh mục

Đề thi tuyển sinh 10 Toán vòng 1 - Tr.ĐH Khoa học tự nhiên năm 2011

Số trang: 8      Loại file: pdf      Dung lượng: 615.93 KB      Lượt xem: 10      Lượt tải: 0    
Thư viện của tui

Phí tải xuống: 4,000 VND Tải xuống file đầy đủ (8 trang) 0
Xem trước 2 trang đầu tiên của tài liệu này:

Thông tin tài liệu:

Mời các bạn học sinh và quý thầy cô tham khảo, đề thi tuyển sinh 10 Toán vòng 1 - Trường đại học Khoa học tự nhiên năm 2011 dành cho các bạn học sinh giúp củng cố kiến thức, luyện thi tuyển sinh vào lớp 10.
Nội dung trích xuất từ tài liệu:
Đề thi tuyển sinh 10 Toán vòng 1 - Tr.ĐH Khoa học tự nhiên năm 2011 Đề thi tuyển sinh vào lớp 10 năm 2012 ĐẠI HỌC QUỐC GIA HÀ NỘI ĐỀ THI TUYỂN SINH LỚP 10TRƯỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN HỆ THPT CHUYÊN NĂM 2011 MÔN THI: TOÁN (Vòng 1) Thời gian làm bài: 120 phút (Không kể thời gian phát đề)Câu I. 1) Giải hệ phương trình:  ( x − 1) y 2 + x + y = 3    ( y − 2) x + y = x + 1 2  2) Giải phương trình: 3 x2 + 7 x+ = . x 2( x + 1)Câu II. 1) Chứng minh rằng không tồn tại các bộ ba số nguyên ( x, y, z ) thỏa mãn đẳng thức: x 4 + y 4 = 7 z 4 + 5. 2) Tìm tất cả các cặp số nguyên ( x, y ) thỏa mãn đẳng thức: ( x + 1) 4 − ( x − 1) 4 = y 3 .Câu III. Cho hình bình hành ABCD với BAD < 90 . Đường phân giác của góc BCD cắt đường tròn ngoại tiếp tam giác BCD tại O khác C . Kẻ đường thẳng (d ) đi qua A và vuông góc với CO . Đường thẳng (d ) lần lượt cắt các đường thẳng CB, CD tại E , F . 1) Chứng minh rằng ∆OBE = ∆ODC . 2) Chứng minh rằng O là tâm đường tròn ngoại tiếp tam giác CEF . 3) Gọi giao điểm của OC và BD là I , chứng minh rằng IB.BE.EI = ID.DF .FI .Câu IV. Với x, y là những số thực dương, tìm giá trị nhỏ nhất của biểu thức x3 4 y3 P= + 3 . x3 + 8 y 3 y + ( x + y )3 Nguồn: Hocmai.vn Hocmai.vn – Ngôi trường chung của học trò Việt Tổng đài tư vấn: 0902 – 11 – 00 - 33 - Trang | 1 - Đề thi tuyển sinh vào lớp 10 năm 2012 ĐẠI HỌC QUỐC GIA HÀ NỘI ĐỀ THI TUYỂN SINH LỚP 10TRƯỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN HỆ THPT CHUYÊN NĂM 2011 MÔN THI: TOÁN (Vòng 2) Thời gian làm bài: 150 phút (Không kể thời gian phát đề)Câu I. 1) Giải phương trình: ( x+3 − x )( ) 1− x +1 = 1. 2) Giải hệ phương trình:   x2 + y 2 = 2 x2 y 2   ( x + y )(1 + xy ) = 4 x y . 2 2 Câu II. 1) Với mỗi số thực a ta gọi phần nguyên của a là số nguyên lớn nhất không vượt quá a và ký 2  1 1 hiệu là [ a ] . Chứng minh rằng với mọi số nguyên dương n , biểu thức n +  3 n − +    27 3   không biểu diễn được dưới dạng lập phương của một số nguyên dương. 2) Với x, y, z là các số thực dương thỏa mãn đẳng thức xy + yz + zx = 5 , tìm giá trị nhỏ nhất của biểu thức: 3x + 3 y + 2 z P= . 6( x + 5) + 6( y 2 + 5) + z 2 + 5 2Câu III. Cho hình thang ABCD với BC song song AD. Các góc BAD và CDA là các góc nhọn. Hai đường chéo AC và BD cắt nhau tại I . P là điểm bất kỳ trên ...

Tài liệu được xem nhiều:

Gợi ý tài liệu liên quan: