Đề thi tuyển sinh lớp 10 môn Toán năm 2012 - Sở Giáo dục và Đào tạo
Số trang: 4
Loại file: doc
Dung lượng: 158.00 KB
Lượt xem: 7
Lượt tải: 0
Xem trước 2 trang đầu tiên của tài liệu này:
Thông tin tài liệu:
Đề thi tuyển sinh lớp 10 môn Toán năm 2012 dành cho các bạn học sinh giúp củng cố kiến thức và luyện thi tuyển sinh THPT. Hy vọng với đề thi này việc sẽ hỗ trợ các bạn trong việc chuẩn bị thi tuyển sinh đạt hiệu quả cao. Mời các bạn cùng tham khảo.
Nội dung trích xuất từ tài liệu:
Đề thi tuyển sinh lớp 10 môn Toán năm 2012 - Sở Giáo dục và Đào tạoSỞ GIÁO DỤC VÀ ĐÀO TẠO KỲ THI TUYỂN SINH LỚP 10 THPT ̣ TP.HCM Năm hoc: 2012 –2013ĐỀ CHÍNH THỨC MÔN: TOÁN Thời gian làm bài: 120 phútBai 1: (2 điểm) ̀ Giải các phương trình và hệ phương trình sau: a) 2 x 2 − x − 3 = 0 2x − 3y = 7 b) 3x + 2 y = 4 c) x 4 + x 2 − 12 = 0 d) x 2 − 2 2 x − 7 = 0Bai 2: (1,5 điểm) ̀ 1 2 1 a) Vẽ đồ thị (P) của hàm số y = x và đường thẳng (D): y = − x + 2 trên cùng một 4 2 hệ trục toạ độ. b) Tìm toạ độ các giao điểm của (P) và (D) ở câu trên bằng phép tính.Bai 3: (1,5 điểm) ̀ Thu gọn các biểu thức sau: 1 2 x 1 A= + − với x > 0; x 1 x + x x −1 x − x B = (2 − 3) 26 + 15 3 − (2 + 3) 26 − 15 3Bai 4: (1,5 điểm) ̀ Cho phương trình x 2 − 2mx + m − 2 = 0 (x là ẩn số) a) Chứng minh rằng phương trình luôn luôn có 2 nghiệm phân biệt với mọi m. b) Gọi x1, x2 là các nghiệm của phương trình. −24 Tìm m để biểu thức M = 2 đạt giá trị nhỏ nhất x1 + x2 − 6 x1 x2 2Bai 5: (3,5 điểm) ̀ Cho đường tròn (O) có tâm O và điểm M nằm ngoài đường tròn (O). Đường thẳng MO cắt (O) tại E và F (ME BÀI GIẢIBai 1: (2 điểm) ̀ Giải các phương trình và hệ phương trình sau: a) 2 x 2 − x − 3 = 0 (a) Vì phương trình (a) có a - b + c = 0 nên 3 (a) � x = −1 hay x = 2 2 x − 3 y = 7 (1) 2x − 3 y = 7 (1) b) ⇔ 3x + 2 y = 4 (2) x + 5 y = −3 (3) ((2) − (1) ) −13 y = 13 ((1) − 2(3)) ⇔ x + 5 y = −3 (3) ((2) − (1) ) y = −1 ⇔ x=2 c) x 4 + x 2 − 12 = 0 (C) Đặt u = x2 ≥ 0, phương trình thành : u2 + u – 12 = 0 (*) −1 + 7 −1 − 7 (*) có ∆ = 49 nên (*) ⇔ u = = 3 hay u = = −4 (loại) 2 2 Do đó, (C) ⇔ x2 = 3 ⇔ x = ± 3 Cách khác : (C) ⇔ (x2 – 3)(x2 + 4) = 0 ⇔ x2 = 3 ⇔ x = ± 3 d) x 2 − 2 2 x − 7 = 0 (d) ∆’ = 2 + 7 = 9 do đó (d) ⇔ x = 2 3 ̀Bai 2: a) Đồ thị: Lưu ý: (P) đi qua O(0;0), ( 2;1) , ( 4; 4 ) (D) đi qua ( −4; 4 ) , ( 2;1) b) PT hoành độ giao điểm của (P) và (D) là 1 2 1 x = − x + 2 ⇔ x2 + 2x – 8 = 0 � x = −4 hay x = 2 4 2 y(-4) = 4, y(2) = 1 Vậy toạ độ giao điểm của (P) và (D) là ( −4; 4 ) , ( 2;1) .Bai 3:Thu gọn các biểu thức sau: ̀ 1 2 x 1 x− x −x− x 2 x A= + − = + x + x x −1 x − x x2 − x x −1 −2 x 2 x 2 x � 1 � 2 x ( x − 1) 2 = + = = với x > 0; x 1 � x + 1� = x ( x − 1) − x( x − 1) x − 1 x − 1 � � x B = (2 − 3) 26 + 15 3 − (2 + 3) 26 − 15 3 1 1 = (2 − 3) 52 + 30 3 − (2 + 3) 52 − 30 3 2 2 1 1 = (2 − 3) (3 3 + 5) 2 − (2 + 3) (3 3 − 5) 2 2 2 1 1 = (2 − 3)(3 3 + 5) − (2 + 3)(3 3 − 5) = 2 2 2Câu 4:a/ Phương trình (1) có ∆’ = m2 - 4m +8 = (m - 2)2 +4 > 0 với mọi m nên phương trình (1) có 2nghiệm phân biệt với mọi m. b cb/ Do đó, theo Viet, với mọi m, ta có: S = − = 2m ; P = = m − 2 a a −24 −24 −6 M= = = ( x1 + x2 ) 2 − 8 x1 x2 4m 2 − 8m + 16 m 2 − 2m + 4 −6= . Khi m = 1 ta có (m − 1) 2 + 3 nhỏ nhất (m − 1) + 3 2 6 −6� −M = lớn nhất khi m = 1 � M = nhỏ nhất khi m = 1 ( m − 1) + 3 2 (m − 1) 2 + 3 K Vậy M đạt giá trị nhỏ nhất là - 2 khi m = 1 TCâu 5 B a) Vì ta có do hai tam giác đồng dạng MAE và MBF Q MA MF A S Nên = MA.MB = ME.MF ME MB (Phương tích của M đối với đường tròn tâm O) V b) Do hệ thức lượng trong đường tròn ta có H MA.MB = MC2, mặt khác hệ thức lượng M ...
Nội dung trích xuất từ tài liệu:
Đề thi tuyển sinh lớp 10 môn Toán năm 2012 - Sở Giáo dục và Đào tạoSỞ GIÁO DỤC VÀ ĐÀO TẠO KỲ THI TUYỂN SINH LỚP 10 THPT ̣ TP.HCM Năm hoc: 2012 –2013ĐỀ CHÍNH THỨC MÔN: TOÁN Thời gian làm bài: 120 phútBai 1: (2 điểm) ̀ Giải các phương trình và hệ phương trình sau: a) 2 x 2 − x − 3 = 0 2x − 3y = 7 b) 3x + 2 y = 4 c) x 4 + x 2 − 12 = 0 d) x 2 − 2 2 x − 7 = 0Bai 2: (1,5 điểm) ̀ 1 2 1 a) Vẽ đồ thị (P) của hàm số y = x và đường thẳng (D): y = − x + 2 trên cùng một 4 2 hệ trục toạ độ. b) Tìm toạ độ các giao điểm của (P) và (D) ở câu trên bằng phép tính.Bai 3: (1,5 điểm) ̀ Thu gọn các biểu thức sau: 1 2 x 1 A= + − với x > 0; x 1 x + x x −1 x − x B = (2 − 3) 26 + 15 3 − (2 + 3) 26 − 15 3Bai 4: (1,5 điểm) ̀ Cho phương trình x 2 − 2mx + m − 2 = 0 (x là ẩn số) a) Chứng minh rằng phương trình luôn luôn có 2 nghiệm phân biệt với mọi m. b) Gọi x1, x2 là các nghiệm của phương trình. −24 Tìm m để biểu thức M = 2 đạt giá trị nhỏ nhất x1 + x2 − 6 x1 x2 2Bai 5: (3,5 điểm) ̀ Cho đường tròn (O) có tâm O và điểm M nằm ngoài đường tròn (O). Đường thẳng MO cắt (O) tại E và F (ME BÀI GIẢIBai 1: (2 điểm) ̀ Giải các phương trình và hệ phương trình sau: a) 2 x 2 − x − 3 = 0 (a) Vì phương trình (a) có a - b + c = 0 nên 3 (a) � x = −1 hay x = 2 2 x − 3 y = 7 (1) 2x − 3 y = 7 (1) b) ⇔ 3x + 2 y = 4 (2) x + 5 y = −3 (3) ((2) − (1) ) −13 y = 13 ((1) − 2(3)) ⇔ x + 5 y = −3 (3) ((2) − (1) ) y = −1 ⇔ x=2 c) x 4 + x 2 − 12 = 0 (C) Đặt u = x2 ≥ 0, phương trình thành : u2 + u – 12 = 0 (*) −1 + 7 −1 − 7 (*) có ∆ = 49 nên (*) ⇔ u = = 3 hay u = = −4 (loại) 2 2 Do đó, (C) ⇔ x2 = 3 ⇔ x = ± 3 Cách khác : (C) ⇔ (x2 – 3)(x2 + 4) = 0 ⇔ x2 = 3 ⇔ x = ± 3 d) x 2 − 2 2 x − 7 = 0 (d) ∆’ = 2 + 7 = 9 do đó (d) ⇔ x = 2 3 ̀Bai 2: a) Đồ thị: Lưu ý: (P) đi qua O(0;0), ( 2;1) , ( 4; 4 ) (D) đi qua ( −4; 4 ) , ( 2;1) b) PT hoành độ giao điểm của (P) và (D) là 1 2 1 x = − x + 2 ⇔ x2 + 2x – 8 = 0 � x = −4 hay x = 2 4 2 y(-4) = 4, y(2) = 1 Vậy toạ độ giao điểm của (P) và (D) là ( −4; 4 ) , ( 2;1) .Bai 3:Thu gọn các biểu thức sau: ̀ 1 2 x 1 x− x −x− x 2 x A= + − = + x + x x −1 x − x x2 − x x −1 −2 x 2 x 2 x � 1 � 2 x ( x − 1) 2 = + = = với x > 0; x 1 � x + 1� = x ( x − 1) − x( x − 1) x − 1 x − 1 � � x B = (2 − 3) 26 + 15 3 − (2 + 3) 26 − 15 3 1 1 = (2 − 3) 52 + 30 3 − (2 + 3) 52 − 30 3 2 2 1 1 = (2 − 3) (3 3 + 5) 2 − (2 + 3) (3 3 − 5) 2 2 2 1 1 = (2 − 3)(3 3 + 5) − (2 + 3)(3 3 − 5) = 2 2 2Câu 4:a/ Phương trình (1) có ∆’ = m2 - 4m +8 = (m - 2)2 +4 > 0 với mọi m nên phương trình (1) có 2nghiệm phân biệt với mọi m. b cb/ Do đó, theo Viet, với mọi m, ta có: S = − = 2m ; P = = m − 2 a a −24 −24 −6 M= = = ( x1 + x2 ) 2 − 8 x1 x2 4m 2 − 8m + 16 m 2 − 2m + 4 −6= . Khi m = 1 ta có (m − 1) 2 + 3 nhỏ nhất (m − 1) + 3 2 6 −6� −M = lớn nhất khi m = 1 � M = nhỏ nhất khi m = 1 ( m − 1) + 3 2 (m − 1) 2 + 3 K Vậy M đạt giá trị nhỏ nhất là - 2 khi m = 1 TCâu 5 B a) Vì ta có do hai tam giác đồng dạng MAE và MBF Q MA MF A S Nên = MA.MB = ME.MF ME MB (Phương tích của M đối với đường tròn tâm O) V b) Do hệ thức lượng trong đường tròn ta có H MA.MB = MC2, mặt khác hệ thức lượng M ...
Tìm kiếm theo từ khóa liên quan:
Đề thi tuyển sinh lớp 10 Đề thi tuyển sinh lớp 10 năm 2012 Đề thi tuyển sinh THPT Đề thi tuyển sinh THPT 2012 Đề thi tuyển sinh lớp 10 môn Toán Đề thi tuyển sinh môn Toán lớp 10Tài liệu liên quan:
-
Đề thi tuyển sinh vào lớp 10 năm học 2014-2015 môn Địa lý - Trường THPT chuyên Hoàng Văn Thụ
4 trang 57 0 0 -
Đề thi tuyển sinh lớp 10 chuyên THPT môn Toán năm 2010 - 2011
5 trang 54 0 0 -
Đề thi tuyển sinh lớp 10 môn Toán (Chuyên) năm 2015-2016 - Sở GD&ĐT Hà Nam
5 trang 52 0 0 -
8 trang 51 0 0
-
Đề thi tuyển sinh lớp 10 môn Toán (Chuyên) năm 2015-2016 - THPT Chuyên KHTN
2 trang 47 0 0 -
17 trang 39 0 0
-
Đề thi tuyển sinh môn Toán năm 2013-2014 - THPT Chuyên Thái Bình
1 trang 34 0 0 -
Đề thi tuyển sinh lớp 10 THPT môn Toán năm 2013 - 2014 trường THPT chuyên Lê Quý Đôn
3 trang 33 0 0 -
12 trang 33 0 0
-
Đề thi tuyển sinh lớp 10 môn Toán (Chuyên) năm 2013-2014 - Sở GD&ĐT Bà Rịa Vũng Tàu
2 trang 32 0 0