Danh mục

Đề thi tuyển sinh vào lớp 10 môn Toán (Chuyên) năm 2024 có đáp án - Trường THCS Tiên Hoàng, Hoa Lư

Số trang: 11      Loại file: doc      Dung lượng: 809.50 KB      Lượt xem: 8      Lượt tải: 0    
Jamona

Hỗ trợ phí lưu trữ khi tải xuống: 1,000 VND Tải xuống file đầy đủ (11 trang) 0
Xem trước 2 trang đầu tiên của tài liệu này:

Thông tin tài liệu:

“Đề thi tuyển sinh vào lớp 10 môn Toán (Chuyên) năm 2024 có đáp án - Trường THCS Tiên Hoàng, Hoa Lư” được chia sẻ nhằm giúp các bạn học sinh ôn tập, làm quen với cấu trúc đề thi và các dạng bài tập có khả năng ra trong bài thi sắp tới. Cùng tham khảo và tải về đề thi này để ôn tập chuẩn bị cho kì thi sắp diễn ra nhé! Chúc các bạn thi tốt!
Nội dung trích xuất từ tài liệu:
Đề thi tuyển sinh vào lớp 10 môn Toán (Chuyên) năm 2024 có đáp án - Trường THCS Tiên Hoàng, Hoa Lư PHÒNG GD&ĐT HOA LƯ ĐỀ THI TUYỂN SINH LỚP 10 CHUYÊN TRƯỜNG THCS ĐINH TIÊN HOÀNG Năm 2024 MÔN: TOÁN Thời gian làm bài: 150 phút (Đề thi gồm 05 câu, 01 trang) MA TRẬN ĐỀ THI Mức độ nhận thức Tổng Tỉ lệ Thông hiểu Vận dụng Vận dụng cao %TT Nội dung kiến thức Số Số Thời Số Số Thời Số Số Thời Số Số Thời tổng CH điểm gian CH điểm gian CH điểm gian CH điểm gian điểm Rút gọn, tính giá trị1 1 1 10 1 1 10 10 biểu thức2 Hệ Phương trình 1 1 10 1 1 10 103 Đa thức 1 1 10 1 1 10 104 Bất đẳng thức 1 1 25 1 1 25 105 Số học 1 0,75 10 1 0,75 15 2 1,5 25 156 Hình học phẳng 1 1 10 1 1 10 1 1 15 3 3 35 307 Tổ hợp 2 1,5 10 2 1,5 25 15 BẢN ĐẶC TẢ ĐỀ THI TUYỂN SINH LỚP 10 CHUYÊNTT Nội dung (đơn vị kiến thức) Mức độ kiến thức, kĩ năng Số câu hỏi theo mức độ nhận thức Tổng % cần đánh giá Thông Vận dụng Vận dụng Điểm hiểu cao1 Biến đổi đại số: Vận dụng được các kiến thức đã 1 1,0đ a) Rút gọn, tính giá trị biểu thức học để rút gọn biểu thức và tính giá 1,0đ 10% trị của biểu thức b) Giải hệ phương trình. Hiểu được khi giải hệ có phương 1 trình vô tỉ thì trước tiên cần điều 1,0đ 1,0đ kiện, biết cách biến đổi hệ cũ về hệ 10% mới có thêm điều kiện2 Hiểu được phương trình bậc 2 có hệ 1 Đa thức và bất đẳng thức: số a khác 0, vận dụng định lý Vi-ét 1,0đ 1,0đ a) Định lý Vi ét để chứng minh x1 − x2 2 3 với 10% mọi số n nguyên dương HS biết cách đặt ẩn phụ (cho gọn), 1 b) Bất đẳng thức; tìm giá trị nhỏ 1,0đ biết tìm điểm rơi hợp lý trong định 1,0đ nhất của biểu thức. 10% lý Cô – si để giải quyết bài toán3 Vận dụng tính chất chia hết của 1 Số học (02 ý nhỏ): 0,75đ tổng, tích…. để chứng minh chia 0,75đ - Quan hệ chia hết 7,5% hết HS sử dụng mối quan hệ giữa chia 1 - Số chính phương, số lập 0,75đ hết và số nguyên tố để tìm nghiệm 0,75đ phương. 7,5% nguyên4 Hình học phẳng: - HS hiểu được cách chứng minh 4 1 1 1 3,0đ Các phương pháp chứng minh tứ điểm cùng nằm trên 1 đường tròn 1,0đ 1,0đ 1,0đ 30% giác nội tiếp, hai tam giác đồng - Vận dụng được kiến thức về tiếp dạng, góc với đường tròn tuyến để chứng minh đường thẳng là tiếp tuyến của đường tròn - HS liên kết các kiến thức đã học: góc với đường tròn, tam giác đồng dạng để chứng minh đoạn thẳng ...

Tài liệu được xem nhiều: