Đề thi tuyển sinh vào lớp 10 THPT năm 2019-2020 môn Toán có đáp án - Sở GD&ĐT Bình Định
Thông tin tài liệu:
Nội dung trích xuất từ tài liệu:
Đề thi tuyển sinh vào lớp 10 THPT năm 2019-2020 môn Toán có đáp án - Sở GD&ĐT Bình Định SỞ GIÁO DỤC VÀ ĐÀO TẠO KỲ THI TUYỂN SINH VÀO 10 THPT BÌNH ĐỊNH NĂM HỌC 2019 - 2020 ----------------- MÔN THI: TOÁN ĐỀ CHÍNH THỨC Ngày thi: 06/06/2019 Thời gian làm bài: 120 phút (không kể thời gian phát ñề) -------------------------- ðỀ BÀI1. Giải phương trình: 3( x − 1) = 5 x + 2 .2. Cho biểu thức: A = x + 2 x − 1 + x − 2 x − 1 với x ≥ 1a) Tính giá trị biểu thức A khi x = 5 .b) Rút gọn biểu thức A khi 1 ≤ x ≤ 2 .1. Cho phương trình: x 2 − (m − 1) x − m = 0 . Tìm m ñể phương trình trên có một nghiệmbằng 2 . Tính nghiệm còn lại.2. Trong mặt phẳng tọa ñộ Oxy cho ba ñường thẳng d1 : y = 2 x − 1; d 2 : y = x; d3 : y = −3x + 2.Tìm hàm số có ñồ thị là ñường thẳng d song song với ñường thẳng d 3 ñồng thời ñi qua giao ñiểm của haiñường thẳng d1 và d 2 . 2Hai ñội công nhân cùng làm chung trong 4 giờ thì hoàn thành ñược công việc. Nếu làm riêng thì thời gian 3hoàn thành công việc ñội thứ hai ít hơn ñội thứ nhất là 5 giờ. Hỏi nếu làm riêng thì thời gian hoàn thành côngviệc của mỗi ñội là bao nhiêu?Cho ñường tròn tâm O , bán kính R và một ñường thẳng d không cắt ñường tròn (O ) . Dựng ñường thẳngOH vuông góc với ñường thẳng d tại ñiểm H . Trên ñường thẳng d lấy ñiểm K (khác ñiểm H ), qua Kvẽ hai tiếp tuyến KA và KB với ñường tròn (O ) , ( A và B là các tiếp ñiểm) sao cho A và H nằm về haiphía của ñường thẳng OK .a) Chứng minh tứ giác KAOH nội tiếp ñược trong ñường tròn.b) ðường thẳng AB cắt ñường thẳng OH tại ñiểm I . Chứng minh rằng IA ⋅ IB = IH ⋅ IO và I là ñiểm cốñịnh khi ñiểm K chạy trên ñường thẳng d cố ñịnh.c) Khi OK = 2 R, OH = R 3 . Tính diện tích tam giác KAI theo R . x > y x2 + y 2Cho x, y là hai số thực thỏa . Tìm giá trị nhỏ nhất của biểu thức P = . xy = 1 x− y LỜI GIẢI ðỀ TUYỂN SINH VÀO 10 BÌNH ðỊNH NĂM HỌC 2019-2020 Câu 1.1. Giải phương trình: 3( x − 1) = 5 x + 2 .2. Cho biểu thức: A = x + 2 x − 1 + x − 2 x − 1 với x ≥ 1a) Tính giá trị biểu thức A khi x = 5 .b) Rút gọn biểu thức A khi 1 ≤ x ≤ 2 . Lời giải 1. Ta có 53( x − 1) = 5 x + 2 ⇔ 3 x − 3 = 5 x + 2 ⇔ 2 x = −5 ⇔ x = − . 2 5Vậy phương trình ñã cho có nghiệm là x = − . 22.a) Khi x = 5 , ta có A = 5 + 2 5 −1 + 5 − 2 5 −1= 5 + 2 4 + 5 − 2 4 = 5 + 2 ⋅ 2 + 5 − 2 ⋅ 2 = 9 + 1 = 3 +1 = 4 .Vậy khi x = 5 thì A = 4 .b) Với 1 ≤ x ≤ 2 , ta cóA = x + 2 x −1 + x − 2 x −1= x −1+ 2 x −1 +1 + x −1 − 2 x −1 +1= ( x − 1 + 1) 2 + ( x − 1 − 1) 2=| x − 1 + 1| + | x − 1 − 1|= x −1 +1+1− x −1 (1 ≤ x ≤ 2 ⇒ 0 ≤ x − 1 ≤ 1 ⇒ x − 1 − 1 ≤ 0)= 2.Vậy khi 1 ≤ x ≤ 2 thì A = 2 . Câu 2.1. Cho phương trình: x 2 − (m − 1) x − m = 0 . Tìm m ñể phương trình trên có một nghiệm bằng 2 . Tínhnghiệm còn lại.2. Trong mặt phẳng tọa ñộ Oxy cho ba ñường thẳng d1 : y = 2 x − 1; d 2 : y = x; d3 : y = −3x + 2.Tìm hàm số có ñồ thị là ñường thẳng d song song với ñường thẳng d 3 ñồng thời ñi qua giao ñiểm của haiñường thẳng d1 và d 2 . Lời giải1. x 2 − (m − 1) x − m = 0. (1) Thay x = 2 vào phương trình (1) ta ñược 22 − (m −1) ⋅ 2 − m = 0 ⇔ 4 − 2m + 2 − m = 0 ⇔ 3m = 6 ⇔ m = 2. Thay m = 2 vào phương trình (1) ta ñược x 2 − x − 2 = 0.Ta có các hệ số: a − b + c = 0 nên phương trình có hai nghiệm phân biệt là x1 = −1; x2 = 2 . Vậy với m = 2 phương trình ñã cho có một nghiệm bằng 2 , nghiệm còn lại là −1 .2.Phương trình ñường thẳng d : ax + b ( a, b ∈ ℝ ) . a = −3 d d3 ⇒ ⇒ d : y = −3x + b, (b ≠ 2). ...
Tìm kiếm theo từ khóa liên quan:
Đề thi tuyển sinh lớp 10 Đề thi vào lớp 10 Đề thi tuyển sinh lớp 10 THPT Đề thi tuyển sinh lớp 10 môn Toán Đề thi tuyển sinh vào lớp 10 môn Toán Đề thi tuyển sinh môn Toán Luyện thi tuyển sinh vào lớp 10 Đề luyện thi môn Toán Ôn tập Toán 9 Ôn thi Toán 9Gợi ý tài liệu liên quan:
-
Bộ đề thi học sinh giỏi môn Toán lớp 9 năm 2017-2018 có đáp án
82 trang 259 0 0 -
Bộ đề thi vào lớp 10 môn Toán các tỉnh năm học 2023-2024
288 trang 111 0 0 -
Đề thi tuyển sinh vào lớp 10 môn Tiếng Anh năm 2022-2023 có đáp án - Sở GD&ĐT Vĩnh Long
4 trang 85 0 0 -
Đề thi vào lớp 10 chuyên Tiếng Anh năm 2019-2020 có đáp án - Trường THPT chuyên Thái Bình
10 trang 84 0 0 -
Đề thi tuyển sinh vào lớp 10 năm học 2014-2015 môn Địa lý - Trường THPT chuyên Hoàng Văn Thụ
4 trang 56 0 0 -
Đề thi tuyển sinh lớp 10 chuyên THPT môn Toán năm 2010 - 2011
5 trang 54 0 0 -
Đề thi tuyển sinh lớp 10 môn Toán (Chuyên) năm 2015-2016 - Sở GD&ĐT Hà Nam
5 trang 51 0 0 -
8 trang 51 0 0
-
Đề thi tuyển sinh lớp 10 môn Toán (Chuyên) năm 2015-2016 - THPT Chuyên KHTN
2 trang 47 0 0 -
Bộ đề thi học sinh giỏi môn Toán lớp 9 năm 2018-2019 có đáp án
60 trang 42 0 0 -
Đề thi tuyển sinh vào lớp 10 môn Toán năm 2022-2023 có đáp án - Sở GD&ĐT Hưng Yên
5 trang 42 0 0 -
Bộ đề thi học sinh giỏi cấp huyện môn Toán lớp 9 năm 2018-2019 có đáp án
36 trang 39 0 0 -
17 trang 38 0 0
-
Công phá môn Toán 8+ đề thi vào lớp 10
270 trang 37 0 0 -
Đề thi tuyển sinh môn Toán năm 2013-2014 - THPT Chuyên Thái Bình
1 trang 34 0 0 -
Bộ Đề thi tuyển sinh lớp 10 môn Anh hay có đáp án
6 trang 33 0 0 -
12 trang 33 0 0
-
Đề thi tuyển sinh lớp 10 THPT môn Toán năm 2013 - 2014 trường THPT chuyên Lê Quý Đôn
3 trang 33 0 0 -
7 trang 32 0 0
-
Đề thi tuyển sinh lớp 10 môn Toán (Chuyên) năm 2013-2014 - Sở GD&ĐT Bà Rịa Vũng Tàu
2 trang 32 0 0