Danh mục

Giáo trình giải tích 3

Số trang: 60      Loại file: pdf      Dung lượng: 1.35 MB      Lượt xem: 15      Lượt tải: 0    
tailieu_vip

Xem trước 6 trang đầu tiên của tài liệu này:

Thông tin tài liệu:

Tham khảo sách giáo trình giải tích 3, tài liệu phổ thông, toán học phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả
Nội dung trích xuất từ tài liệu:
Giáo trình giải tích 3 TRÖÔØNG ÑAÏI HOÏC ÑAØ LAÏT KHOA TOAÙN - TIN HOÏCTAÏ LE LÔÏI - ÑOà NGUYEÂN SÔN GIAÛI TÍCH 3 (Giaùo Trình) -- Löu haønh noäi boä -- Ñaø Laït 2008 Giaûi Tích 3 Taï Leâ Lôïi - Ñoã Nguyeân SônMuïc luïcChöông I. Tích phaân phuï thuoäc tham soá 1. Tích phaân phuï thuoäc tham soá . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2. Tích phaân suy roäng phuï thuoäc tham soá . . . . . . . . . . . . . . . . . . . . . . . 9 3. Caùc tích phaân Euler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14Chöông II. Tích phaân haøm soá treân ña taïp 1. Ña taïp khaû vi trong Rn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2. Tích phaân haøm soá treân ña taïp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24Chöông III. Daïng vi phaân 1. Daïng k-tuyeán tính phaûn ñoái xöùng . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 2. Daïng vi phaân . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3. Boå ñeà Poincareù . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37Chöông IV. Tích phaân daïng vi phaân 1. Ñònh höôùng . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 2. Tích phaân daïng vi phaân . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 3. Coâng thöùc Stokes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47Baøi taäp. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 4 I. TÝch ph©n phô thuéc tham sè1 TÝch ph©n phô thuéc tham sè1.1 §Þnh nghÜa§Þnh nghÜa 1. XÐt hµm f (x, t) = f (x1 , . . . , xn , t1, . . . , tm ) x¸c ®Þnh trªn miÒnX × T ⊂ Rn × Rm . Gi¶ sö X ®o ®-îc (Jordan) vµ víi mçi gi¸ trÞ cña t ∈ T cè®Þnh, hµm f (x, t) kh¶ tÝch theo x trªn X . Khi ®ã tÝch ph©n I (t) = f (x, t)dx (1) Xlµ hµm theo biÕn t = (t1 , . . . , tm ), gäi lµ tÝch ph©n phô thuéc tham sè víi mtham sè t1 , . . . , tm .1.2 TÝnh liªn tôc§Þnh lý 1. NÕu f (x, t) liªn tôc trªn X × T ⊂ Rn × Rm , ë ®©y X, T lµ c¸c tËpcompact, th× tÝch ph©n I (t) = f (x, t)dx Xliªn tôc trªn T .Chøng minh. Cè ®Þnh t0 ∈ T . Ta sÏ chøng minh víi mäi > 0, tån t¹i δ > 0 saocho víi mäi t ∈ T , d(t, t0) < δ ta cã | I (t) − I (t0) |< .Tõ ®Þnh nghÜa suy ra | I ( t ) − I ( t 0 ) |= (f (x, t) − f (x, t0))dx ≤ | f (x, t) − f (x, t0) | dx. X XDo f liªn tôc trªn compact nªn liªn tôc ®Òu trªn ®ã, tøc lµ tån t¹i δ > 0 sao cho | f (x , t ) − f (x, t) |< v (X )víi mäi (x, t), (x , t ) ∈ X × T , d((x , t ), (x, t)) < δ .Tõ ®ã, víi d(t, t0) < δ ta cã | I ( t ) − I ( t 0 ) |< v ( X ) =. v (X ) 5 2 √ √ 1 1 x2 + t2dx = |x|dx = 1 v× hµm x2 + t2 liªn tôc trªnVÝ dô. 1) Ta cã lim t→0 −1 −1[−1, 1] × [− , ]. 2 −2 xt−2e−x t nÕu t = 02) Kh¶o s¸t tÝnh liªn tôc t¹i ®iÓm (0, 0) cña hµm f (x, t) = . 0 nÕu t = 0NÕu f (x, t) liªn tôc t¹i (0, 0), th× f (x, t) liªn tôc trªn [0, 1] × [− , ]. Khi ®ã, tÝch 1ph©n I (t) = f (x, t)dx liªn tôc trªn [− , ] . Nh-ng ta cã 0 1 1 1 ...

Tài liệu được xem nhiều:

Tài liệu cùng danh mục:

Tài liệu mới: