Hệ Thống Bài Tập Hình Học
Số trang: 24
Loại file: pdf
Dung lượng: 312.83 KB
Lượt xem: 8
Lượt tải: 0
Xem trước 3 trang đầu tiên của tài liệu này:
Thông tin tài liệu:
Hệ thống tất cà các bài tập hình học, ôn thi đạt kết quả cao
Nội dung trích xuất từ tài liệu:
Hệ Thống Bài Tập Hình HọcGiáo viên: Nguy n Đình Dũng - Trư ng THPT Nông C ng IV LTĐHBài 1) ĐHCĐ 2002 K.ATrong khoâng gian vôùi heä toïa ñoä Ñeâcac vuoâng goùc Oxyz cho hai ñöôøng thaúng: x = 1+ t x − 2 y + z = 0 ∈1 : x + 2 y − 2 z + 4 = 0 vaø ∈2 : y = 2 + t z = 1 + 2t a) Vieát phöông trình maët phaúng (P) chöùa ñöôøng thaúng ∈1 vaø song song vôùi ñöôøng thaèng ∈2b) cho ñieåm M(2 ; 1,4). Tìm toïa ñoä ñieåm H thuoäc ñöôøng thaúng ∈2 sao cho ñoaïn thaúng MH coù ñoä daøi nhoûnhaát.Bài 2) ĐHCĐ 2002 K.B 1 1.Trong maët phaúng toïa ñoä Ñeâcac vuoâng goùc Oxy cho hình chöõ nhaät ABCD coù taâm ;0 , phöông trình 2 ñöôøng thaúng AB laø x – 2y + 2 = 0 vaø AB = 2AD. Tìm toïa ñoä caùc ñænh A,B,C,D bieát raèng A coù hoaønh ñoä aâm. 2.Cho hình laäp phöông ABCDA1B1C1D1 coù caïnh baèng a. a) Tính theo a khoaûng caùch giöõa hai ñöôøng thaúng A1B vaø B1D. b) Goïi M,N,P laàn löôït laø caùc trung ñieåm cuûa caùc caïn h BB1, CD, A1D1. Tính goùc giöõa hai ñöôøng thaúng MP, C1N.Bài 3) ĐHCĐ 2002 K.D1.Cho hình töù dieän ABCD coù caïnh AD vuoâng goùc vôùi maët phaúng (ABC) ; AC = AD = 4cm; AB = 3cm; BC= 5cm. Tính khoaûng caùch töø ñieåm A tôùi maët phaúng (BCD).2.Trong khoâng gian vôùi heä toïa ñoä Ñeâcac vuoâng goùc Oxyz cho maët phaúng (P) : 2x – y + 2 = 0 (2m + 1) x + (1 − m) y + m − 1 = 0Vaø ñöôøng thaúng dm : ( m laø tham soá ). mx + (2m + 1) z + 4m + 2 = 0Xaùc ñònh m ñeå ñöôøng thaúng dm song song vôùi maët phaúng (P).Bài 4) ĐHCĐ 2003 K.A 1) Cho hình laäp phöông ABCD.A’B’C’D’. Tính soá ño cuûa goùc phaúng nhò dieän [B,A’C,D]. 2) Trong khoâng gian vôùi heä truïc toïa ñoä Ñeâcac vuoâng goùc Oxyz cho hình hoäp chöõ nhaät ABCD.A’B’C’D’ coù A truønh vôùi goác cuûa heä toïa ñoä, B(a; 0; 0) , D(0; a; 0), A’(0; 0; b) (a>0, b>0). Goïi M laø trung ñieåm caïnh CC’. a) tính theå tích khoái töù dieän BDA’M theo a vaø b. a b) Xaùc ñònh tyû soá ñeå hai maët phaúng (A’BD) vaø (MBD) vuoâng goùc vôùi nhau. bBài 5) ĐHCĐ 2003 K.B 1) Trong maët phaúng vôùi heä toïa ñoä Ñeâcac vuoâng goùc Oxyz cho tam giaùc ABC coù AB = AC , 2 BAD = 900. Bieát M(1; -1) laø trung ñieåm caïnh BC vaø G ;0 laø troïng taâm tam giaùc ABC. Tìm toïa 3 ñoä caùc ñænh A, B, C. 2) Cho hình laêng truï ñöùng ABCD.A’B’C’D’ coù ñaùy ABCD laø moät hình thoi caïnh a, goùc BAD = 600. Goïi M laø trung ñieåm caïnh AA’ vaø N laø trung ñieåm caïnh CC’. Chöùng minh raèng boán ñieåm B’, M, D, N cuøng thuoäc moät maët phaúng. Haõy tính ñoä daøi canh AA’ theo a ñeå töù giaùc B’MDN laø hình vuoâng. -1-Giáo viên: Nguy n Đình Dũng - Trư ng THPT Nông C ng IV LTĐH 3) Trong khoâng gian vôùi heä toïa ñoä Ñeâcac vuoâng goùc Oxyz cho hai ñieåm A(2; 0; 0), B(0;0;8) vaø ñieåm C uuur sao cho AC =(0; 6; 0). Tính khoaûng caùch töø trung ñieåm I cuûa BC ñeán ñöôøng thaúng OA.Bài 6) ĐHCĐ 2003 K.D 1) Trong maët phaúng toïa ñoä Ñeâcac vuoâng goùc Oxyz cho ñöôøng troøn (C) : (x – 1)2 + (y – 2)2 = 4 vaø ñöôøng thaúng d : x – y – 1 = 0 Vieát phöông trình ñöôøng troøn (C’) ñoái xöùng vôùi ñöôøng troøn (C) qua ñöôøng thaúng d. Tìm toïa ñoä caùc giao ñieåm cuûa (C) vaø (C’). 2) Trong khoâng gian vôùi heä toïa ñoä Ñeâcac vuoâng goùc Oxyz cho ñöôøng thaúng : x + 3ky − z + 2 = 0 dk : tìm k ñeå ñöôøng thaúng dk vuoâng goùc vôùi maët phaúng (P) : x – y – 2z +5 = 0. kx − y + z + 1 = 0 3) Cho hai maët phaúng (P) vaø (Q) vuoâng goùc vôùi nhau, coù giao tuyeán laø ñöôøng thaúng ♠. Treân ♠ laáy hai ñieåm A, B vôùi AB = a . trong maët phaúng (P) ñieåm C , trong maët phaúng (Q) laáy ñieåm D sao cho AC, BD vuoâng goùc vôùi ♠ vaø AC = BD = AB. Tính baùn kính maët caàu ngoaïi tieáp töù dieän ABCD vaø tính khoaûng caùch töø A ñeán maët phaúng (BCD) theo a.Bài 7) ĐHCĐ 2004 K.A 1) Trong maët phaúng toïa ñoä Oxy cho hai ñieåm A (0; 2) vaø B( − 3 ; −1 ). Tìm toïa ...
Nội dung trích xuất từ tài liệu:
Hệ Thống Bài Tập Hình HọcGiáo viên: Nguy n Đình Dũng - Trư ng THPT Nông C ng IV LTĐHBài 1) ĐHCĐ 2002 K.ATrong khoâng gian vôùi heä toïa ñoä Ñeâcac vuoâng goùc Oxyz cho hai ñöôøng thaúng: x = 1+ t x − 2 y + z = 0 ∈1 : x + 2 y − 2 z + 4 = 0 vaø ∈2 : y = 2 + t z = 1 + 2t a) Vieát phöông trình maët phaúng (P) chöùa ñöôøng thaúng ∈1 vaø song song vôùi ñöôøng thaèng ∈2b) cho ñieåm M(2 ; 1,4). Tìm toïa ñoä ñieåm H thuoäc ñöôøng thaúng ∈2 sao cho ñoaïn thaúng MH coù ñoä daøi nhoûnhaát.Bài 2) ĐHCĐ 2002 K.B 1 1.Trong maët phaúng toïa ñoä Ñeâcac vuoâng goùc Oxy cho hình chöõ nhaät ABCD coù taâm ;0 , phöông trình 2 ñöôøng thaúng AB laø x – 2y + 2 = 0 vaø AB = 2AD. Tìm toïa ñoä caùc ñænh A,B,C,D bieát raèng A coù hoaønh ñoä aâm. 2.Cho hình laäp phöông ABCDA1B1C1D1 coù caïnh baèng a. a) Tính theo a khoaûng caùch giöõa hai ñöôøng thaúng A1B vaø B1D. b) Goïi M,N,P laàn löôït laø caùc trung ñieåm cuûa caùc caïn h BB1, CD, A1D1. Tính goùc giöõa hai ñöôøng thaúng MP, C1N.Bài 3) ĐHCĐ 2002 K.D1.Cho hình töù dieän ABCD coù caïnh AD vuoâng goùc vôùi maët phaúng (ABC) ; AC = AD = 4cm; AB = 3cm; BC= 5cm. Tính khoaûng caùch töø ñieåm A tôùi maët phaúng (BCD).2.Trong khoâng gian vôùi heä toïa ñoä Ñeâcac vuoâng goùc Oxyz cho maët phaúng (P) : 2x – y + 2 = 0 (2m + 1) x + (1 − m) y + m − 1 = 0Vaø ñöôøng thaúng dm : ( m laø tham soá ). mx + (2m + 1) z + 4m + 2 = 0Xaùc ñònh m ñeå ñöôøng thaúng dm song song vôùi maët phaúng (P).Bài 4) ĐHCĐ 2003 K.A 1) Cho hình laäp phöông ABCD.A’B’C’D’. Tính soá ño cuûa goùc phaúng nhò dieän [B,A’C,D]. 2) Trong khoâng gian vôùi heä truïc toïa ñoä Ñeâcac vuoâng goùc Oxyz cho hình hoäp chöõ nhaät ABCD.A’B’C’D’ coù A truønh vôùi goác cuûa heä toïa ñoä, B(a; 0; 0) , D(0; a; 0), A’(0; 0; b) (a>0, b>0). Goïi M laø trung ñieåm caïnh CC’. a) tính theå tích khoái töù dieän BDA’M theo a vaø b. a b) Xaùc ñònh tyû soá ñeå hai maët phaúng (A’BD) vaø (MBD) vuoâng goùc vôùi nhau. bBài 5) ĐHCĐ 2003 K.B 1) Trong maët phaúng vôùi heä toïa ñoä Ñeâcac vuoâng goùc Oxyz cho tam giaùc ABC coù AB = AC , 2 BAD = 900. Bieát M(1; -1) laø trung ñieåm caïnh BC vaø G ;0 laø troïng taâm tam giaùc ABC. Tìm toïa 3 ñoä caùc ñænh A, B, C. 2) Cho hình laêng truï ñöùng ABCD.A’B’C’D’ coù ñaùy ABCD laø moät hình thoi caïnh a, goùc BAD = 600. Goïi M laø trung ñieåm caïnh AA’ vaø N laø trung ñieåm caïnh CC’. Chöùng minh raèng boán ñieåm B’, M, D, N cuøng thuoäc moät maët phaúng. Haõy tính ñoä daøi canh AA’ theo a ñeå töù giaùc B’MDN laø hình vuoâng. -1-Giáo viên: Nguy n Đình Dũng - Trư ng THPT Nông C ng IV LTĐH 3) Trong khoâng gian vôùi heä toïa ñoä Ñeâcac vuoâng goùc Oxyz cho hai ñieåm A(2; 0; 0), B(0;0;8) vaø ñieåm C uuur sao cho AC =(0; 6; 0). Tính khoaûng caùch töø trung ñieåm I cuûa BC ñeán ñöôøng thaúng OA.Bài 6) ĐHCĐ 2003 K.D 1) Trong maët phaúng toïa ñoä Ñeâcac vuoâng goùc Oxyz cho ñöôøng troøn (C) : (x – 1)2 + (y – 2)2 = 4 vaø ñöôøng thaúng d : x – y – 1 = 0 Vieát phöông trình ñöôøng troøn (C’) ñoái xöùng vôùi ñöôøng troøn (C) qua ñöôøng thaúng d. Tìm toïa ñoä caùc giao ñieåm cuûa (C) vaø (C’). 2) Trong khoâng gian vôùi heä toïa ñoä Ñeâcac vuoâng goùc Oxyz cho ñöôøng thaúng : x + 3ky − z + 2 = 0 dk : tìm k ñeå ñöôøng thaúng dk vuoâng goùc vôùi maët phaúng (P) : x – y – 2z +5 = 0. kx − y + z + 1 = 0 3) Cho hai maët phaúng (P) vaø (Q) vuoâng goùc vôùi nhau, coù giao tuyeán laø ñöôøng thaúng ♠. Treân ♠ laáy hai ñieåm A, B vôùi AB = a . trong maët phaúng (P) ñieåm C , trong maët phaúng (Q) laáy ñieåm D sao cho AC, BD vuoâng goùc vôùi ♠ vaø AC = BD = AB. Tính baùn kính maët caàu ngoaïi tieáp töù dieän ABCD vaø tính khoaûng caùch töø A ñeán maët phaúng (BCD) theo a.Bài 7) ĐHCĐ 2004 K.A 1) Trong maët phaúng toïa ñoä Oxy cho hai ñieåm A (0; 2) vaø B( − 3 ; −1 ). Tìm toïa ...
Gợi ý tài liệu liên quan:
-
CHẨN ĐOÁN XQUANG GAN VÀ ĐƯỜNG MẬT
11 trang 194 0 0 -
Giáo trình Nguyên tắc phương pháp thẩm định giá (phần 1)
9 trang 164 0 0 -
Trắc nghiệm và đáp án hệ cơ sở dữ liệu - ĐH Công Nghiệp Tp. Hồ Chí Minh
63 trang 116 0 0 -
Đề thi môn tài chính doanh nghiệp
5 trang 80 1 0 -
Cấu tạo từ của hệ thống số đếm trong các ngôn ngữ (những bài toán trong các con số)
13 trang 46 0 0 -
Đề thi môn Hoá học (Dành cho thí sinh Bổ túc)
3 trang 42 0 0 -
Giáo án lý thuyết Pháp luật kinh tế
5 trang 41 0 0 -
Một số bất đẳng thức cơ bản ứng dụng vào bất đẳng thức hình học - 2
29 trang 37 0 0 -
Bài tập và lời giải môn Xác suất có điều kiện
2 trang 36 0 0 -
Bài thu hoạch: Lịch sử kinh tế
22 trang 36 0 0