Thông tin tài liệu:
Tham khảo tài liệu hướng dẫn đề toán số 31, tài liệu phổ thông, ôn thi đh-cđ phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả
Nội dung trích xuất từ tài liệu:
Hướng dẫn đề toán số 31Ôn thi Đại học Trần Sĩ Tùng www.MATHVN.com Hướng dẫn Đề số 31Câu I: 2) Phương trình hoành độ giao điểm của (Cm) và đường thẳng y = 1 là: x=0 ⇔ x(x2 + 3x + m) = 0 ⇔ 2 x3 + 3x2 + mx + 1 = 1 x + 3x + m = 0 (2) (Cm) cắt đường thẳng y = 1 tại C(0, 1), D, E phân biệt ⇔ (2) có 2 nghiệm xD, xE ≠ 0. m0 ∆ = 9 − 4m > 0 ⇔ �2 �4 m< 0 +3 0+m 0 9 Lúc đó tiếp tuyến tại D, E có hệ số góc lần lượt là: kD = y’(xD) = 3xD + 6 xD + m = −( xD + 2m); kE = y’(xE) = 3xE + 6 xE + m = −( xE + 2m). 2 2 Các tiếp tuyến tại D, E vuông góc ⇔ kDkE = –1. ⇔ (3xD + 2m)(3xE + 2m) = 9xDxE + 6m(xD + xE) + 4m2 = –1 ⇔ 9m – 18m + 4m2 = –1; (vì xD + xE = –3; xDxE = m theo định lý Vi-et). 1 ⇔m = ( 9 65 ) . 8 � π� � π� π kπCâu II: 1) PT ⇔ cos � − � − cos3x ⇔ cos � − � cos(π − 3x) ⇔ x = + = = x x � 3� � 3� 32 2) Điều kiện: x ≥ 2 và y ≥ 2 : Lấy (1) trừ (2) vế theo vế ta được: x 2 + 91 − y 2 + 91 = y − 2 − x − 2 + y 2 − x 2 x2 − y 2 y−x = + ( y − x)( y + x) � y−2 + x−2 x + 91 + y + 91 2 2 � � x+ y 1 � ( x − y) � + + x + y� 0 = � x 2 + 91 + y 2 + 91 � x−2 + y−2 � � ⇔ x = y (trong ngoặc luôn dương và x và y đều lớn hơn 2) Vậy từ hệ trên ta có: x 2 + 91 = x − 2 + x 2 � x 2 + 91 − 10 = x − 2 − 1 + x 2 − 9 x2 − 9 x−3 = + ( x − 3)( x + 3) � x − 2 +1 x + 91 + 10 2 � � � � 1 1 � ( x − 3) �x + 3) � − 1� − = � 0 ⇔x = 3 ( � � � x + 91 + 10 � x − 2 + 1 � 2 � Vậy nghiệm của hệ x = y = 3 e2 e2 e2 dx d (ln x) �1 1�Câu III: I = � x ln x (1 + ln x) � x(1 + ln x) = =�− �(ln x ) = 2ln2 – ln3 d ln x 1 + ln x � ln e� e eCâu IV: Dựng SH ⊥ AB . Ta có: ( SAB) ⊥ ( ABC ), ( SAB) �( ABC ) = AB, SH �( SAB) � SH ⊥ ( ABC ) và SH là đường cao của hình chóp. Dựng HN ⊥ BC , HP ⊥ AC � SN ⊥ BC , SP ⊥ AC � ᄋSPH = ᄋSNH = α ∆ SHN = ∆ SHP ⇒ HN = HP. a3 a3 . ∆ SHP vuông có: SH = HP.tan α = tan α ∆ AHP vuông có: HP = HA.sin 60o = 4 4 a 2 3 a3 1 1a 3 .tan α . = tan α Thể tích hình chóp S . ABC : V = .SH .S ABC = . 3 34 4 16 11 4Câu V: Áp dụng bất đẳng thức + ( x > 0, y > 0) x y x+ y 1 1 4 ...