Danh mục

Kỹ thuật robot - Chương 2: Phân tích hệ cơ cân bằng tĩnh và chuyển động của tay máy

Số trang: 17      Loại file: pdf      Dung lượng: 578.35 KB      Lượt xem: 10      Lượt tải: 0    
Thư viện của tui

Phí tải xuống: 3,000 VND Tải xuống file đầy đủ (17 trang) 0
Xem trước 2 trang đầu tiên của tài liệu này:

Thông tin tài liệu:

Tài liệu tham khảo giáo trình kỹ thuật robot cung cấp nội dung phân tích hệ cơ cân bằng tĩnh và chuyển động của tay máy. Để nắm được kiến thức này mời các bạn cùng tham khảo
Nội dung trích xuất từ tài liệu:
Kỹ thuật robot - Chương 2: Phân tích hệ cơ cân bằng tĩnh và chuyển động của tay máy Chương 2: Phân tích hệ cơ cân bằng tĩnh và chuyển động tay máy Chương 2 PHÂN TÍCH HỆ CƠ CÂN BẰNG TĨNH VÀ CHUYỂN ĐỘNG CỦA TAY MÁY 2.1. Các khái niệm cơ bản và tiền đề tĩnh học 2.1.1. Trạng thái cân bằng  Hệ vật được xem như ở trạng thái cân bằng khi tổng các ngoại lực tác động lên nó bằng không. Lúc ấy hệ vật hoặc đừng yên hoặc chuyển động thẳng đều đối với hệ qui chiếu đó.  Trong thực tế luôn tồn tại lực ma sát nên khi hệ vật đạt trạng thái cân bằng thì nó đứng yên. 2.1.2. Lực  Lực đặc trưng cho tác dụng cơ học của vật thể này lên vật thể khác  Lực được biểu diễn bằng một vector {phương, chiều, độ lớn, điểm đặt}   Trong hệ trục {x,y,z} thì lực F  ( Fx , Fy , Fz ) 2.1.3. Mômen của lực đối với tâm        Mômen của lực F đặt tại A đối với tâm O là m0 ( F )  OA  F  d  F    m0 ( F ) có độ lớn bằng d.F, điểm đặt tại O, phương vuông góc với mặt phẳng   ( F , O ) , chiều thuận theo chiều xoay của OA, F  m0 ( F ) A  d F O 2.1.4. Momen của lực đối với trục (∆)     Tách F  F//  F => m0 ( F )  dF  Vậy momen cua lực đối với trục bằng tích của thành phần hình chiếu vuông góc của lực (lên mặt phẳng vuông góc với trục) với khoãng cách từ lực hình chiếu đến trục.  Chiều của momen hường theo chiều xoay của lực quanh trục. 18 Chương 2: Phân tích hệ cơ cân bằng tĩnh và chuyển động tay máy ( )  F   F// F d O 2.1.5. Hệ lực     Hệ lực tác dụng vào một vật đang khảo sát  ( Fk )  ( F1 , F2 ,..., Fn )    Hai hệ lực  ( Fk )   ( Ph ) khi chúng có cùng tác dụng cơ học      Hợp lực của hệ lực: R được gọi là hợp lực của hệ lực  ( Fk ) khi R   Fk   Hệ lực cân bằng khi R  0 2.1.6. Các tiên đề tĩnh học  Hai lực cân bằng khi chúng cùng phương, ngược hướng, cùng độ lớn.  Hợp lực của hai lực là vector lực đường chéo của hình bình hành.    F1 R  F1  F2 R  F2  Khi hai vật tương tác với nhau, chúng tác lên nhau một lực:  Hai lực tương tác cùng phương, cùng độ lớn, nhưng ngược hướng.  Điểm đặt của 2 lực nằm ngay tại vị trí tiếp xúc của 2 vật và hướng vuông góc với tiếp tuyến tại điểm tiếp xúc.   N F Tiếp tuyến  Vật tự do là vật có thể dịch chuyển tùy ý trong lân cận bé từ vị trí đang xét. Ngược lại gọi là vật không tự do  Vật khảo sát (S) được qui ước gọi là vật chịu liên kết. Các vật khác tương tác cơ học với S được gọi là vật gây liên kết.  Vật không tự do có thể xem là tự do nếu ta thay thế các vật gây liên kết bằng các phản lực liên kết. Ví dụ : 19 Chương 2: Phân tích hệ cơ cân bằng tĩnh và chuyển động tay máy h Mr ● m m  Điều kiện cân bằng của hệ tĩnh    R0     ( Fk )  0    , trong đó R là vector hợp lực và M 0 là mô men M 0  0  chính với tâm O của hệ  ( Fk ) . Ta có     M ox   m x ( Fk ) Rx   Fkx       k k R( Rx , R y , Rz )   R y   Fky , và M 0 ( M ox , M oy , M oz ) ...

Tài liệu được xem nhiều: