Lecture Strength of Materials I: Chapter 4 - PhD. Tran Minh Tu
Số trang: 33
Loại file: pdf
Dung lượng: 1.12 MB
Lượt xem: 8
Lượt tải: 0
Xem trước 4 trang đầu tiên của tài liệu này:
Thông tin tài liệu:
Chapter 4 - State of stress and strength hypothese. The following will be discussed in this chapter: State of stress at a point, plane stress, mohr’s circle, special cases of plane stress, stress – strain relations, strength hypotheses.
Nội dung trích xuất từ tài liệu:
Lecture Strength of Materials I: Chapter 4 - PhD. Tran Minh Tu STRENGTH OF MATERIALS1/10/2013 TRAN MINH TU - University of Civil Engineering, 1 Giai Phong Str. 55, Hai Ba Trung Dist. Hanoi, VietnamCHAPTER 4 State of Stress and Strength Hypothese 1/10/2013 Contents 4.1. State of stress at a point 4.2. Plane Stress 4.3. Mohr’s Circle 4.4. Special cases of plane stress 4.5. Stress – Strain relations 4.6. Strength Hypotheses1/10/2013 3 4.1. State of stress at a point• External loads applied to the body =>The body is deformed =>The stress isoccurred • At a point K on the arbitrary section, there n are 2 types of stress: normal stress s and shearing stress t y K • The state of stress at a point K is a set ofall stresses components acting on allsections, which go through this point z x• The most general state of stress at a point may be represented by 6 components, s x ,s y ,s z normal stresses t xy , t yz , t zx shearing stresses (Note: t xy t yx , t yz t zy , t zx t xz ) 1/10/2013 44.1. State of stress at a point• Principal planes: no shear stress acts on• Principal directions: the direction of the principal planes• Principal stresses: the normal stress act on the principal plane• There are three principal planes , which are perpendicular to each otherand go through a point• Three principal stresses: s1, s2, s3 with: s1 ≥ s2 ≥ s3• Types of state of stress: - Simple state of stress: 2 of 3 principal stresses equal to zeros - Plane state of stress: 1 of 3 principal stresses equal to zeros - General state of stress: all 3 principal stresses differ from zeros 1/10/2013 54.2. Plane Stress • Plane Stress – the state of stress in which two faces of the cubic element are free of stress. For the illustrated example, the state of stress is defined by s x , s y , t xy and s z t zx t zy 0. • State of plane stress occurs in a thin plate subjected to the forces acting in the mid-plane of the plate. y sy O sy tyx x tyx y sx sx txy txy x 6 z4.2. Plane StressSign Convention:• Normal Stress: positive: tension; negative: compression• Shear Stress: positive: the direction associated with its subscripts are plus-plus or minus-minus; negative: the directions are plus-minus or minus-plus4.2.1. Complementary shear stresses:• The shear stresses with the same subscripts in two orthogonal planes (e.g. txy and tyx) are equal y 1/10/2013 74.2. Plane Stress sy 4.2.2. Stresses on Inclined Planes: u Sign Convention: >0 - counterclockwise; sx txy su >0 – pull out u t uv - clockwiseO x su Fu 0 v s u A s x A cos2 t xy A cos sin y sx s y A sin 2 t yx A sin cos 0 txy tuv tyx F v 0 sy τuv A - τ xy Acos 2 α - σ x Acosαsinα Asin A Acos +τ yx Asin2 α +σ y Asinαcosα = 01/10/2013 84.2. Plane Stress4.2.2. Stresses on Inclined Planes: su u s x s y s x s y su cos 2 t xy sin 2 txy 2 2 x s x s y tuv t uv sin 2 t xy cos 2sx sy 2 y v tyx - > 0: counterclockwise from the x axis to u axis sy 1/10/2013 94.2. Plane Stress4.2.3. Principal stresses are maximum and minimum stresses :By taking the derivative of su to and setting it equal to zero: ds u 2t xy 0 => tg2 p =- d sx sy ...
Nội dung trích xuất từ tài liệu:
Lecture Strength of Materials I: Chapter 4 - PhD. Tran Minh Tu STRENGTH OF MATERIALS1/10/2013 TRAN MINH TU - University of Civil Engineering, 1 Giai Phong Str. 55, Hai Ba Trung Dist. Hanoi, VietnamCHAPTER 4 State of Stress and Strength Hypothese 1/10/2013 Contents 4.1. State of stress at a point 4.2. Plane Stress 4.3. Mohr’s Circle 4.4. Special cases of plane stress 4.5. Stress – Strain relations 4.6. Strength Hypotheses1/10/2013 3 4.1. State of stress at a point• External loads applied to the body =>The body is deformed =>The stress isoccurred • At a point K on the arbitrary section, there n are 2 types of stress: normal stress s and shearing stress t y K • The state of stress at a point K is a set ofall stresses components acting on allsections, which go through this point z x• The most general state of stress at a point may be represented by 6 components, s x ,s y ,s z normal stresses t xy , t yz , t zx shearing stresses (Note: t xy t yx , t yz t zy , t zx t xz ) 1/10/2013 44.1. State of stress at a point• Principal planes: no shear stress acts on• Principal directions: the direction of the principal planes• Principal stresses: the normal stress act on the principal plane• There are three principal planes , which are perpendicular to each otherand go through a point• Three principal stresses: s1, s2, s3 with: s1 ≥ s2 ≥ s3• Types of state of stress: - Simple state of stress: 2 of 3 principal stresses equal to zeros - Plane state of stress: 1 of 3 principal stresses equal to zeros - General state of stress: all 3 principal stresses differ from zeros 1/10/2013 54.2. Plane Stress • Plane Stress – the state of stress in which two faces of the cubic element are free of stress. For the illustrated example, the state of stress is defined by s x , s y , t xy and s z t zx t zy 0. • State of plane stress occurs in a thin plate subjected to the forces acting in the mid-plane of the plate. y sy O sy tyx x tyx y sx sx txy txy x 6 z4.2. Plane StressSign Convention:• Normal Stress: positive: tension; negative: compression• Shear Stress: positive: the direction associated with its subscripts are plus-plus or minus-minus; negative: the directions are plus-minus or minus-plus4.2.1. Complementary shear stresses:• The shear stresses with the same subscripts in two orthogonal planes (e.g. txy and tyx) are equal y 1/10/2013 74.2. Plane Stress sy 4.2.2. Stresses on Inclined Planes: u Sign Convention: >0 - counterclockwise; sx txy su >0 – pull out u t uv - clockwiseO x su Fu 0 v s u A s x A cos2 t xy A cos sin y sx s y A sin 2 t yx A sin cos 0 txy tuv tyx F v 0 sy τuv A - τ xy Acos 2 α - σ x Acosαsinα Asin A Acos +τ yx Asin2 α +σ y Asinαcosα = 01/10/2013 84.2. Plane Stress4.2.2. Stresses on Inclined Planes: su u s x s y s x s y su cos 2 t xy sin 2 txy 2 2 x s x s y tuv t uv sin 2 t xy cos 2sx sy 2 y v tyx - > 0: counterclockwise from the x axis to u axis sy 1/10/2013 94.2. Plane Stress4.2.3. Principal stresses are maximum and minimum stresses :By taking the derivative of su to and setting it equal to zero: ds u 2t xy 0 => tg2 p =- d sx sy ...
Tìm kiếm theo từ khóa liên quan:
Strength of Materials Sức bền vật liệu Bài giảng Sức bền vật liệu Plane stress Mohr’s circle Special cases of plane stressGợi ý tài liệu liên quan:
-
Thiết lập bảng tra tính toán chuyển vị của dầm bằng phương pháp nhân biểu đồ Veresaghin
4 trang 514 3 0 -
Một số bài tập nâng cao về sức bền vật liệu: Phần 2
120 trang 82 0 0 -
Đề thi môn cơ học kết cấu - Trường đại học Thủy Lợi - Đề số 32
1 trang 71 0 0 -
Giáo trình Cơ ứng dụng (Nghề: Công nghệ ô tô - Trung cấp) - Tổng cục giáo dục nghề nghiệp
85 trang 50 0 0 -
Lý thuyết cơ học ứng dụng: Phần 2
155 trang 43 0 0 -
Đề thi môn kết cấu công trình - ĐH Dân Lập Văn Lang
5 trang 42 0 0 -
52 trang 39 0 0
-
Đề thi môn cơ học kết cấu 1 - Trường đại học Thủy Lợi - Đề số 10
1 trang 37 0 0 -
25 trang 36 0 0
-
BÁO CÁO THÍ NGHIỆM SỨC BỀN VẬT LIỆU - Thí nghiệm kéo thép
18 trang 35 0 0