Lecture Strength of Materials I: Chapter 6 - PhD. Tran Minh Tu
Số trang: 28
Loại file: pdf
Dung lượng: 3.60 MB
Lượt xem: 17
Lượt tải: 0
Xem trước 3 trang đầu tiên của tài liệu này:
Thông tin tài liệu:
Lecture Strength of Materials I - Chapter 6: Torsion. The following will be discussed in this chapter: Introduction, torsional loads on circular shafts, strength condition and stiffness condition, statically indeterminate problem, strain energy, examples.
Nội dung trích xuất từ tài liệu:
Lecture Strength of Materials I: Chapter 6 - PhD. Tran Minh Tu STRENGTH OF MATERIALS1/10/2013 TRAN MINH TU - University of Civil Engineering, 1 Giai Phong Str. 55, Hai Ba Trung Dist. Hanoi, VietnamCHAPTER 6 TORSION 1/10/2013 Contents 6.1. Introduction 6.2. Torsional Loads on Circular Shafts 6.3. Strength Condition and stiffness condition 6.4. Statically Indeterminate Problem 6.5. Strain Energy 6.6. Examples Home’s works1/10/2013 36.1. Introduction1/10/2013 46.1. Introduction1/10/2013 56.1. Introduction Torsion members – the slender members subjected to torsionalloading, that is loaded by couple that produce twisting of the memberabout its axis Examples – A torsional moment (torque) is applied to the lug-wrenchshaft, the shaft transmits the torque to the generator, the drive shaft ofan automobile... • Torsional Loads on Circular Shafts: the torsional moment or couple A F x Q2 B C Q1 t z 2 T t T 1 1 2 y1/10/2013 66.1. Introduction Internal torsional moment diagram • Using method of section • Sign convention of Mz - Positive: clockwise - Negative: counterclockwise Mz > 0 M z 0 Mz = y y z z x x 1/10/2013 76.2. Torsion of Circular Shafts6.2.1. Simplifying assumptions1/10/2013 86.2. Torsion of Circular Shafts=> In the cross-section, only shear stress exists 6.2.2. Compatibility • Consider the portion of the shaft shown in the figure • CD – before deformation • CD’ – after deformation - From the geometry DD d dz d => The Shear strain: dz - d – the angle of twist - Following Hooke’s law: d G G 1/10/2013 dz 96.2. Torsion of Circular Shafts 6.2.3. Equilibrium d 2 d M z dA G dA G Ip A dz A dz d M z – the rate of twist dz GI p 6.2.3. Torsion formulas – Shearing stress Mz – internal torsional moment Mz Ip – polar moment of inertia Ip – radial position1/10/2013 106.2. Torsion of Circular Shafts - Maximum shearing stress Mz Mz max R Ip Wp - Wp - Section modulus of torsion – Angle of twist c a b O A B L A L M z dz M dz rad From 6.2.3: AB z 1/10/2013 B GI p 0 GI p 116.2. Torsion of Circular Shafts M zL Mz const AB GI p GI p – Multiply torques GIp – stiffness of torsional shaft If the shaft is subjected to several different torques or cross-sectionalarea, or shear modulus changes abruptly from one region of the shaft tothe next. Mz const GI p i n Mz AB li ...
Nội dung trích xuất từ tài liệu:
Lecture Strength of Materials I: Chapter 6 - PhD. Tran Minh Tu STRENGTH OF MATERIALS1/10/2013 TRAN MINH TU - University of Civil Engineering, 1 Giai Phong Str. 55, Hai Ba Trung Dist. Hanoi, VietnamCHAPTER 6 TORSION 1/10/2013 Contents 6.1. Introduction 6.2. Torsional Loads on Circular Shafts 6.3. Strength Condition and stiffness condition 6.4. Statically Indeterminate Problem 6.5. Strain Energy 6.6. Examples Home’s works1/10/2013 36.1. Introduction1/10/2013 46.1. Introduction1/10/2013 56.1. Introduction Torsion members – the slender members subjected to torsionalloading, that is loaded by couple that produce twisting of the memberabout its axis Examples – A torsional moment (torque) is applied to the lug-wrenchshaft, the shaft transmits the torque to the generator, the drive shaft ofan automobile... • Torsional Loads on Circular Shafts: the torsional moment or couple A F x Q2 B C Q1 t z 2 T t T 1 1 2 y1/10/2013 66.1. Introduction Internal torsional moment diagram • Using method of section • Sign convention of Mz - Positive: clockwise - Negative: counterclockwise Mz > 0 M z 0 Mz = y y z z x x 1/10/2013 76.2. Torsion of Circular Shafts6.2.1. Simplifying assumptions1/10/2013 86.2. Torsion of Circular Shafts=> In the cross-section, only shear stress exists 6.2.2. Compatibility • Consider the portion of the shaft shown in the figure • CD – before deformation • CD’ – after deformation - From the geometry DD d dz d => The Shear strain: dz - d – the angle of twist - Following Hooke’s law: d G G 1/10/2013 dz 96.2. Torsion of Circular Shafts 6.2.3. Equilibrium d 2 d M z dA G dA G Ip A dz A dz d M z – the rate of twist dz GI p 6.2.3. Torsion formulas – Shearing stress Mz – internal torsional moment Mz Ip – polar moment of inertia Ip – radial position1/10/2013 106.2. Torsion of Circular Shafts - Maximum shearing stress Mz Mz max R Ip Wp - Wp - Section modulus of torsion – Angle of twist c a b O A B L A L M z dz M dz rad From 6.2.3: AB z 1/10/2013 B GI p 0 GI p 116.2. Torsion of Circular Shafts M zL Mz const AB GI p GI p – Multiply torques GIp – stiffness of torsional shaft If the shaft is subjected to several different torques or cross-sectionalarea, or shear modulus changes abruptly from one region of the shaft tothe next. Mz const GI p i n Mz AB li ...
Tìm kiếm theo từ khóa liên quan:
Strength of Materials Sức bền vật liệu Bài giảng Sức bền vật liệu Torsional loads Circular shafts Strength conditionGợi ý tài liệu liên quan:
-
Thiết lập bảng tra tính toán chuyển vị của dầm bằng phương pháp nhân biểu đồ Veresaghin
4 trang 514 3 0 -
Một số bài tập nâng cao về sức bền vật liệu: Phần 2
120 trang 82 0 0 -
Đề thi môn cơ học kết cấu - Trường đại học Thủy Lợi - Đề số 32
1 trang 71 0 0 -
Giáo trình Cơ ứng dụng (Nghề: Công nghệ ô tô - Trung cấp) - Tổng cục giáo dục nghề nghiệp
85 trang 50 0 0 -
Lý thuyết cơ học ứng dụng: Phần 2
155 trang 43 0 0 -
Đề thi môn kết cấu công trình - ĐH Dân Lập Văn Lang
5 trang 42 0 0 -
52 trang 39 0 0
-
Đề thi môn cơ học kết cấu 1 - Trường đại học Thủy Lợi - Đề số 10
1 trang 38 0 0 -
25 trang 38 0 0
-
BÁO CÁO THÍ NGHIỆM SỨC BỀN VẬT LIỆU - Thí nghiệm kéo thép
18 trang 36 0 0