Danh mục

Luyện thi ĐH môn Toán: Nguyên hàm lượng giác (Phần 5) - Thầy Đặng Việt Hùng

Số trang: 3      Loại file: pdf      Dung lượng: 107.81 KB      Lượt xem: 15      Lượt tải: 0    
tailieu_vip

Phí tải xuống: miễn phí Tải xuống file đầy đủ (3 trang) 0
Xem trước 2 trang đầu tiên của tài liệu này:

Thông tin tài liệu:

Tài liệu "Luyện thi ĐH môn Toán: Nguyên hàm lượng giác (Phần 5) - Thầy Đặng Việt Hùng" tóm lược nội dung cần thiết và cung cấp các bài tập ví dụ hữu ích, giúp các bạn củng cố và nắm kiến thức về nguyên hàm lượng giác thật hiệu quả.
Nội dung trích xuất từ tài liệu:
Luyện thi ĐH môn Toán: Nguyên hàm lượng giác (Phần 5) - Thầy Đặng Việt HùngKhóa học LTĐH môn Toán – Thầy ĐẶNG VIỆT HÙNG Facebook: LyHung95 07. NGUYÊN HÀM LƯỢNG GIÁC – P5 Thầy Đặng Việt Hùng [ĐVH]   d( A sin x ± B cos x ± C ) ← 2 2 → ( A ∓ B ) sin 2 x dx Dạng 5. Nguyên hàm dùng biến đổi vi phân  ( d sin x + cos x ← 4 4  ) → − sin 4 x dxCách giải: 1 1 − cos 4 x 3 1 Ta có sin 4 x + cos 4 x = ( sin 2 x + cos 2 x ) − 2sin 2 x.cos 2 x = 1 − sin 2 2 x = 1 − . 2 1 = + cos 4 x. 2 2 2 4 4 3 1 Từ đó d ( sin 4 x + cos 4 x ) = d  + cos4 x  = − sin 4 x dx. 4 4  Dạng nguyên hàm này thường được “ngụy trang” vào các hàm số có vẻ phức tạp, nên các bạn hãy cố gắng nhớ đượcvi phân của nó. Với các nguyên hàm lượng giác mà mẫu số có vẻ “dài dòng” thì một kinh nghiệm là các em hãy lấy vi phân củamẫu số xem tử số có quan hệ gì với vi phân đó hay không ? 3Chú ý: Ngoài hai công thức trên, dạng nguyên hàm này cũng có thể chứa sin6 x + cos 6 x = 1 − sin 2 2x. 4Ví dụ 1: [ĐVH]. Tính các nguyên hàm sau: sin 2 x sin 2 x dxa) I1 = ∫ dx b) I 2 = ∫ cos x + 4sin x 2 2 2sin x − 4cos 2 x + 5cos 2 x 2 Hướng dẫn giải:a) Ta có d ( cos x + 4sin x ) = ( −2sin x.cos x + 8sin x.cos x ) dx = 6sin x.cos x dx = 3sin 2 x dx 2 2 → sin 2 x dx = d ( cos 2 x + 4sin 2 x ) . 1 3 1 d ( cos x + 4sin x ) 2 d ( cos x + 4sin x ) 2 2 2 2 2 sin 2 xTừ đó I1 = ∫ dx = ∫ = ∫ = cos 2 x + 4sin 2 x + C. cos x + 4sin x 2 2 3 cos x + 4sin x 2 2 3 2 cos x + 4sin x 2 2 3Bình luận:Ngoài cách giải như trên, chúng ta có thể mạnh dạn vận dụng kiến thức lượng giác để biến đổi mẫu số gọn gàng hơn 1 + cos2x 1 − cos2x 3 5như sau cos 2 x + 4 sin 2 x = + 4. = − cos2x + 2 2 2 2  3 5  3 5 d  − cos2x +  d  − cos2x +  = ∫  2 = ∫  sin 2x dx 1 2 2 2 2 2 3 5Khi đó I 1 = ∫ = − cos2x + + C. 3 5 3 3 5 3 3 5 3 2 2 − cos2x + − cos2x + 2 − cos2x + 2 2 2 2 2 2Rõ ràng hai kết quả thu được hoàn toàn giống nhau! ...

Tài liệu được xem nhiều:

Gợi ý tài liệu liên quan: