Danh mục

Market risk measures using finite Gaussian mixtures

Số trang: 17      Loại file: pdf      Dung lượng: 576.83 KB      Lượt xem: 12      Lượt tải: 0    
tailieu_vip

Phí tải xuống: 8,000 VND Tải xuống file đầy đủ (17 trang) 0
Xem trước 2 trang đầu tiên của tài liệu này:

Thông tin tài liệu:

Value at Risk (VaR) is the most popular market risk measure as it summarizes in one figure the exposure to different risk factors. It had been around for over a decade when Expected Shortfall (ES) emerged to correct its shortcomings. Both risk measures can be estimated under several models. We explore the application of a parametric model to fit the joint distribution of risk factor returns based on multivariate finite Gaussian Mixtures, derive a closed-form expression for ES under this model and estimate risk measures for a multi-asset portfolio over an extended period. We then compare results versus benchmark models (Historical Simulation and Normal) through back-testing all of them at several confidence levels. Evidence shows that the proposed model is a competitive one for the estimation of VaR and ES.
Nội dung trích xuất từ tài liệu:
Market risk measures using finite Gaussian mixtures

Tài liệu được xem nhiều: