Danh mục

MÔ HÌNH LOGISTIC TRONG XẾP HẠNG RỦI RO TÍN DỤNG

Số trang: 10      Loại file: pdf      Dung lượng: 199.69 KB      Lượt xem: 24      Lượt tải: 0    
tailieu_vip

Hỗ trợ phí lưu trữ khi tải xuống: 4,000 VND Tải xuống file đầy đủ (10 trang) 0
Xem trước 2 trang đầu tiên của tài liệu này:

Thông tin tài liệu:

Mô hình Logistic (Maddala[1], 1984) là mô hình định lượng trong đó biến phụ thuộc là biến giả, chỉ nhận 2 giá trị là 0 hoặc 1. Mô hình này được ứng dụng rộng rãi trong phân tích kinh tế nói chung và rủi ro tín dụng nói riêng. Cụ thể hơn, mô hình này có thể giúp Ngân hàng xác định khả năng khách hàng sẽ có rủi ro tín dụng (biến phụ thuộc) trên cơ sở sử dụng các nhân tố có ảnh hưởng đến khách hàng (biến độc lập).
Nội dung trích xuất từ tài liệu:
MÔ HÌNH LOGISTIC TRONG XẾP HẠNG RỦI RO TÍN DỤNG MÔ HÌNH LOGISTIC TRONG XẾP HẠNG RỦI RO TÍN DỤNG Mô hình Logistic (Maddala[1], 1984) là mô hình định lượng trong đó biến phụ thuộc là biến giả, chỉ nhận 2 giá trị là 0 hoặc 1. Mô hình này được ứng dụng rộng rãi trong phân tích kinh tế nói chung và rủi ro tín dụng nói riêng. Cụ thể hơn, mô hình này có thể giúp Ngân hàng xác định khả năng khách hàng sẽ có rủi ro tín dụng (biến phụ thuộc) trên cơ sở sử dụng các nhân tố có ảnh hưởng đến khách hàng (biến độc lập). Trong mô hình này, cấu trúc dữ liệu như sau: Cấu trúc dữ liệu các biến trong mô hình Logistic Nguồn: Maddala (1984) Y đóng vai trò là biến phụ thuộc và là biến nhị phân, chỉ có thể nhận hai giá trị là 0 hoặc 1, cụ thể là: + Xi là biến độc lập, thể hiện các nhân tố ảnh hưởng đến khách hàng, ví dụ như giới tính, thu thập, tình trạng nhà,… đối với khách hàng cá nhân, hoặc ROE, ROA, vốn chủ sở hữu,… đối với khách hàng doanh nghiệp. + Y^ là giá trị ước lượng của Y, thu được khi hồi quy Y theo các biến độc lập . Một điều cần lưu ý là giá trị của chưa chắc đã thỏa mãn điều kiện do là giá trị ước lượng phụ thuộc vào các biến độc lập. Khi đó, xác suất một khách hàng trả được nợ (tức là xác suất Y = 1) được tính theo công thức sau, trong đó e là hằng số Euler (xấp xỉ 2,718) : Như vậy, với các nhân tố có ảnh hưởng tới khách hàng được xác định trước (qua tờ kê khai của khách hàng, báo cáo tài chính,…) chúng ta có thể xác định được xác suất khách hàng đó trả được nợ. Với xác suất trả được nợ càng cao thì khách hàng đó càng ít có rủi ro tín dụng và ngược lại. Dựa vào bảng dự báo xác suất của khách hàng, đối chiếu với thực tế trả nợ, Ngân hàng có thể xây dựng các mức xếp hạng rủi ro tín dụng phù hợp. Một ví dụ đơn giản như sau: một Ngân hàng dựa trên bộ số liệu và lịch sử tín dụng của khách hàng, đã hồi quy được một mô hình để ước lượng khả năng trả nợ của khách hàng cá nhân như sau: Trong đó X1 là thu nhập trung bình 1 tháng (đv: triệu đồng) của khách hàng, X2 là biến giả đặc trưng cho trình độ học vấn khách hàng, giá trị này bằng 1 nếu khách hàng có trình độ đại học trở lên, bằng 0 nếu khách hàng có trình độ dưới đại học. X3 là số người phụ thuộc trong gia đình. Giả sử có 1 khách hàng cá nhân tới vay vốn, có thu nhập trung bình 1 tháng là 12 triệu đồng; trình độ Đại học và trong gia đình có 2 người phụ thuộc; khi đó căn cứ vào mô hình trên chúng ta tính được giá trị . Từ đó chúng ta tính được xác suất khách hàng này trả được nợ là: Như vậy xác suất khách hàng này trả được nợ là 0,711; căn cứ vào các mức xếp hạng mà ngân hàng đã xây dựng để xếp khoản vay của khách hàng vào mức phù hợp. Ví dụ ngân hàng xếp những khách hàng có mức xác suất trả được nợ trên 0,8 là hạng AAA, trên 0,7 đến dưới 0,8 là AA, … như vậy khách hàng trên được xếp vào hạng AA. Phương pháp ước lượng Như đã đề cập ở mục trên, phương trình tính xác suất khách hàng trả được nợ: Trong đó, ký hiệu hàm ; Như vậy để tính xác suất trả được nợ của khách hàng, chúng ta tính các giá trị ước lượng của Y là , để làm được điều này chúng ta cần tình toán các giá trị . Trong mục này tác giả đề cập đến phương pháp ước lượng các hệ sốbeta , cụ thể như sau: Hàm xác suất trên được gọi là hàm phân bố logistic. Trong hàm logistic này khi nhận các giá trị từ -∞ đến +∞ thì p_i nhận giá trị từ 0 đến 1. Do là phi tuyến đối với X và các tham số , vì vậy chúng ta không thể áp dụng trực tiếp phương pháp bình phương nhỏ nhất (OLS) để ước lượng, người ta dùng ước lượng hợp ý tối đa (maximum likelihood) để ước lượng β. Do Y chỉ nhận một trong hai giá trị 0 – 1, do vậy Y có phân bố nhị thức nên hàm hợp lý [2] với mẫu kích thước n có dạng sau: Chúng ta cần ước lượng hợp lý tối đa [3] của β . Để làm được điều này chúng ta lấy logarit cơ số tự nhiên hàm hợp lý, sau đó cho các đạo hàm riêng ứng với các βi bằng 0, thu được 1 hệ phương trình. Sau đó chúng ta sử dụng phương pháp Newton-Raphson để giải hệ phương trình trên và thu được 1 công thức của β . Cuối cùng chúng ta sử dụng quá trình lặp để ước lượng hệ số β . [4] Ngày nay, phương pháp ước lượng các hệ số đã được tự động hóa dựa trên một số phần mềm kinh tế lượng như Eviews, R, Stata, SPSS, … Trong nghiên cứu thực nghiệm, người ta có thể tìm cách bỏ đi một số biến mà vai trò giải thích cho biến Y không đủ lớn (hệ số không có ý nghĩa thống kê), nhằm tránh hiện tượng các biến độc lập có tương quan lẫn nhau làm sai lệch kết quả của mô hình. Kiểm định mô hình Khi chúng ta đã ước lượng được các hệ số β , lúc này trước khi tiến hành dự báo xác suất khả năng trả nợ của khách hàng, điều cần thiết là chúng ta tiến hành một số kiểm định để xem xét mô hình hồi quy đó đã hợp lý chưa, liệu có tồn tại khuyết tật nào của mô hình không. Để giải quyết vấn đề này chúng ta tiến hành một số kiểm định như sau: Ø Kiểm định tính ngẫu nhiên của phần dư Các sai số thu được từ mô hình ước lượng so với giá trị thực tế là Y phải là sai số ngẫu nhiên. Để kiểm định tính ngẫu nhiên của các sai số này, người ta có thể sử dụng kiểm định Dickey-Fuller hoặc kiểm định Philip-Perron. Ø Kiểm định tính định dạng đúng của mô hình Mô hình hợp lý là mô hình được định dạng đúng, việc định dạng sai mô hình có thể dẫn đến các kết quả sai lệch và làm kết quả dự báo bị méo mó. Để kiểm định xem mô hình được định dạng đúng hay chưa, người ta sử dụng thống kê Hosmer-Lemeshow. Nêu mô hình có các phần dư là sai số ngẫu nhiên và được định dạng đúng thì mô hình được coi là phù hợp, có thể sử dụng để dự báo. Ngược lại, nếu không thỏa mãn 2 điều kiện trên chúng ta cần hồi quy lại mô hình với các biến độc lập khác hoặc tiến hành một số hiệu chỉnh cần thiết như tăng cỡ mẫu, điều chỉnh định dạng hàm, … Xác định độ chính xác của kết quả dự báo Một mô hình được coi là thành công hay không phụ thuộc chủ yếu vào tính chính xác của kết quả dự báo thu được từ mô hình đó. Do biến Y chỉ có thể nhận 2 g ...

Tài liệu được xem nhiều: