Danh mục

MỘT SỐ PHƯƠNG PHÁP GIẢI PHƯƠNG TRÌNH VÀ BẤT PHƯƠNG TRÌNH CHỨA CĂN THỨC

Số trang: 15      Loại file: doc      Dung lượng: 734.50 KB      Lượt xem: 11      Lượt tải: 0    
Thu Hiền

Phí tải xuống: miễn phí Tải xuống file đầy đủ (15 trang) 0
Xem trước 2 trang đầu tiên của tài liệu này:

Thông tin tài liệu:

Sử dụng phương pháp bình phương liên tiếp nhằm biến đổi phương trình, bất phương trình về dạng không còn chứa căn thức. Tuy nhiên khi bình phương hai vế của phương trình, bất phương trình nhớ sử đặt điều kiện cho hai vế cùng dấu (đối với phương trình có thể giải bằng phương trình hệ quả sau đó thử lại kết quả, còn đối với bất phương trình bắt buộc phải đặt điều kiện cho hai vế cùng dấu)...
Nội dung trích xuất từ tài liệu:
MỘT SỐ PHƯƠNG PHÁP GIẢI PHƯƠNG TRÌNH VÀ BẤT PHƯƠNG TRÌNH CHỨA CĂN THỨC MỘT SỐ PHƯƠNG PHÁP GIẢI PHƯƠNG TRÌNH VÀ BẤT PHƯƠNG TRÌNH CHỨA CĂN THỨCI. Một số dạng cơ bản của phương trình, bất phương trình chứa căn thức. 1. Phương trình f ( x) 0 f ( x) = g ( x) a) f ( x) = g ( x) g ( x) 0 f ( x) = g ( x) b) f ( x ) = �� ) � �( x 2 g x 2 − 3x + 2 = x − 1 ( 1)Ví dụ 1: Giải phương trình sau:Hướng dẫn: f ( x ) = g ( x ) nên ta giải như sauNhận xét: Phương trình có dạngTa có x −1 0 ( 1) x 2 − 3 x + 2 = ( x − 1) 2 x1 � x =1 � x =1 Vậy S = { 1} ( 2) x 2 − 5 x + 4 = −2 x 2 − 3 x + 12Ví dụ 2: Giải phương trình:Hướng dẫn: Ta có ( 2) � x 2 − 5 x + 4 = −2 x 2 − 3 x + 12 x2 − 5x + 4 0 x 2 − 5 x + 4 = −2 x 2 − 3 x + 12 �x − 1) ( x − 4 ) � ( 0 3x 2 − 2 x − 8 = 0 �x 1 x4 −8 x=2 � x= � 6 −8 x= 6 � 8� Vậy S = � � − �6 1 Nguyên Tăng Vũ – Nguyên Ngoc Duy ̃ ̃ ̣ 2. Bất phương trình g ( x) 0 f ( x) < g ( x) a) 0 �f ( x ) < � ( x ) � 2 g �� g ( x) < 0 f ( x) 0 f ( x) > g ( x) b) g ( x) 0 f ( x ) > �� ) � �( x 2 gVí dụ 3: Giải các bất phương trình sau: 2 ( x 2 − 1) a) x + 1 �14 � b) 2 x − 5 < − x 2 + 4 x − 3 , S = 1; �5� Hướng dẫn a) Ta có : −1 x x +1 0 2 ( x 2 − 1) x +1 � x2 − 2x − 3 �0 2 ( x − 1) ( x + 1) 2 2 0 x2 − 1 0 x −1 x = −1 � −1 �x � � 3 1x3 x −1 x1 Vậy tập nghiệm S = [ 1;3] �{ −1} 2x − 5 < 0 ( 1) − x2 + 4x − 3 0 b)Ta có 2 x − 5 < − x2 + 4x − 3 2x − 5 0 ( 2) ( 2 x − 5) 2 < − x2 + 4 x − 3 Giải (1) 5 x< 5 ( 1) �< 2 1x 2 1x3 Giải (2) 2 Nguyên Tăng Vũ – Nguyên Ngoc Duy ̃ ̃ ̣ 5 5 x x 5 14 � �2 ( 2 ) ��< 2 ...

Tài liệu được xem nhiều: