![Phân tích tư tưởng của nhân dân qua đoạn thơ: Những người vợ nhớ chồng… Những cuộc đời đã hóa sông núi ta trong Đất nước của Nguyễn Khoa Điềm](https://timtailieu.net/upload/document/136415/phan-tich-tu-tuong-cua-nhan-dan-qua-doan-tho-039-039-nhung-nguoi-vo-nho-chong-nhung-cuoc-doi-da-hoa-song-nui-ta-039-039-trong-dat-nuoc-cua-nguyen-khoa-136415.jpg)
Một số thuận toán cải tiến cho đánh giá tần số vân cục bộ của ảnh vân tay
Số trang: 7
Loại file: pdf
Dung lượng: 304.70 KB
Lượt xem: 13
Lượt tải: 0
Xem trước 2 trang đầu tiên của tài liệu này:
Thông tin tài liệu:
Hong, Wan, Jain đã đề xuất thuật toán sử dụng x-signature để đánh giá tần số cục bộ của đường vân. Thuật toán tìm các đỉnh của x-signature và tính khoảng cách trung bình giữa các đỉnh này, tần số cục bộ thu được là nghịch đảo của khoảng cách trung bình [1]. Phương pháp này đơn giản và có độ phức tạp tính toán thấp, tuy nhiên rất khó để tìm các đỉnh của x-signature khi có nhiễu. Trong bài báo này, chúng tôi đề xuất một thuật toán cải tiến, nhằm hạn chế tối đa ảnh hưởng của nhiễu.
Nội dung trích xuất từ tài liệu:
Một số thuận toán cải tiến cho đánh giá tần số vân cục bộ của ảnh vân tay T¹p chÝ Khoa häc & C«ng nghÖ - Sè 1(45) Tập 2/N¨m 2008 MỘT THUẬT TOÁN CẢI TIẾN CHO ĐÁNH GIÁ TẦN SỐ VÂN CỤC BỘ CỦA ẢNH VÂN TAY Ngô Quốc Tạo (Viện Công nghệ Thông tin - Viện KH&CN Việt Nam) Đào Thanh Khiết - Bùi Đức Giang (Trường ĐH Công nghệ - ĐHQG Hà Nội) 1. Giới thiệu Ảnh vân tay bao gồm các đường vân có hướng, được phân cách bởi các rãnh vân. Trong một vùng vân tay nhỏ, nếu không có sự xuất hiện của các minutiae và các điểm đặc biệt, thì các đường vân và rãnh vân song song với nhau, tạo nên một hình sóng có hướng và tần số ổn định. Do vậy hướng vân cục bộ và tần số vân cục bộ là hai thuộc tính nội tại của ảnh vân tay. Đây là các tham số chính cho các quá trình xử lý vân tay. O’Gorman và Nickerson (1988, 1989) đã dùng các bộ lọc dải thông để nâng cao ảnh vân tay [2, 3]. Hong, Wan, Jain (1998) sử dụng bộ lọc Gabor để nâng cao ảnh [1]. Các thuật toán này đều lấy tham số là hướng và tần số vân cục bộ. Nếu tần số vân cục bộ được đánh giá không chính xác, thì sẽ dẫn đến kết quả tạo ra các đường vân sai, hoặc làm mất các chi tiết của ảnh vân tay. Do đó một thuật toán đánh giá tần số vân tin cậy là rất hữu ích cho quá trình xử lý vân tay hiệu quả. Hong, Wan, Jain đã đề xuất thuật toán sử dụng x-signature để đánh giá tần số cục bộ của đường vân. Thuật toán tìm các đỉnh của x-signature và tính khoảng cách trung bình giữa các đỉnh này, tần số cục bộ thu được là nghịch đảo của khoảng cách trung bình [1]. Phương pháp này đơn giản và có độ phức tạp tính toán thấp, tuy nhiên rất khó để tìm các đỉnh của x-signature khi có nhiễu. Trong bài báo này, chúng tôi đề xuất một thuật toán cải tiến, nhằm hạn chế tối đa ảnh hưởng của nhiễu. 2. Phương pháp đánh giá tần số vân cục bộ của Hong, Wan, Jain (1998) Tần số vân cục bộ là khác nhau với các vân tay khác nhau, và cũng có thể khác nhau đối với các vùng khác nhau trong cùng một vân tay. Hong, Wan, Jain đã đánh giá tần số vân cục bộ bằng cách đếm số pixel trung bình giữa hai đỉnh cấp xám của hai đường vân liên tiếp nhau [1] (gọi tắt là thuật toán HWJ). Tần số f ij tại ( x i , y j ) được tính như sau: hướng vân cục bộ khối 16 x 16 cửa sổ 32 x 16 x-signature Hình 1. Minh họa khối vân tay và x-signature. 68 T¹p chÝ Khoa häc & C«ng nghÖ - Sè 1(45) Tập 2/N¨m 2008 1. Chia ảnh vân tay thành các khối w x w (16 x 16). 2. Với mỗi khối có tâm là ( x i , y j ) , ta định nghĩa một cửa sổ l x w (32x16) có hướng, cũng có tâm là ( x i , y j ) , được đặt sao cho hướng chiều rộng trùng với hướng của đường vân tại vùng lân cận của ( x i , y j ) (xoay hệ tọa độ sao cho trục y trùng với hướng vân cục bộ). 3. Với mỗi khối có tâm là ( x i , y j ) , tính x-signature={X0,X1,…,Xl-1}, là tổng các cấp xám được tích lũy theo trục x trong cửa sổ. Cách làm này có tác dụng loại bỏ ảnh hưởng của các nhiễu nhỏ, giúp sự tích lũy cấp xám được làm trơn hơn. Cụ thể ta có: 1 w −1 ∑ G(u, v), k = 0,1,..., l − 1 w d=0 w l u = x i + (d − ) cos O(x i , y j ) + (k − ) sin O(x i , y j ) 2 2 w l v = y j + (d − ) sin O(x i , y j ) − (k − ) cos O(x i , y j ) 2 2 Xk = (1) với O là bản đồ hướng, và O(xi,yj) là hướng tại điểm (xi,yj). 4. f ij được tính bằng nghịch đảo của khoảng cách trung bình giữa hai đỉnh liên tiếp của x-signature. Nếu không có các minutiae và các điểm đặc biệt xuất hiện trong cửa sổ hướng, thì xsignature sẽ hình thành một sóng dạng sin rời rạc và có cùng tần số với các đường vân và rãnh vân trong cửa sổ đó. Gọi Tij là khoảng cách trung bình giữa hai đỉnh liên tiếp của x-signature, khi đó tần số fij được tính như sau: fij = 1 Tij (2) Nếu không có đỉnh nào được tìm thấy trong x-signature, thì tần số được gán giá trị -1 để phân biệt với các tần số đúng khác. Thuật này đơn giản và nhanh. Tuy nhiên, nhược điểm là khó tìm được hai đỉnh cấp xám liên tiếp nhau trong các ảnh vân tay có nhiễu. Trong trường hợp này, tác giả gợi ý dùng một nội suy và bộ lọc thông thấp. 3. Nhận xét và đề xuất x-signature Để thấy rõ hơn nhược điểm của thuật toán đánh giá tần số cục bộ HWJ, ta xét một ví dụ đơn giản của x-signature như sau: 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 position Hình 2: Biểu đồ minh họa ví dụ của x-signature. 69 T¹p chÝ Khoa häc & C«ng nghÖ - Sè 1(45) Tập 2/N¨m 2008 Nhìn hình 3.9, ta thấy x-signature có dạng hình sin với chu kỳ là 6, và có một điểm nhiễu ở vị trí 13. Tuy nhiên theo thuật toán HWJ, ta sẽ tìm được 4 đỉnh ở các vị trí 4, 10, 13, 16. Nên khoảng cách trung bình thu được giữa hai đỉnh liên tiếp là 4. Nói cách khác chu kỳ của xsignature thu được từ HWJ là 4, không đúng với chu kỳ thật. b x-signature 8 6 4 2 b/2 x0 0 1 2 3 4 5 6 7 8 9 10111213141516171819 position Hình 3: Minh họa cửa sổ K. Nhằm khắc phục nhược điểm của thuật toán HWJ, tôi đề xuất một thuật toán cải tiến nâng cao độ chính xác của tần số tìm được khi có ảnh hưởng của nhiễu. Để thuận tiện, ta đặt f=x-signature. Thuật toán giả sử f(x) là một hàm có dạng hình sin. Ta sử dụng một cửa sổ K có a) Thuật toán gửi/nhận lệnh/dữ liệu của PC b )Thuật toán gửi/nhận lệnh/dữ liệu của nút mạngđộ rộng là b, cho trượt trên f(x). Vị trí của cửa sổ K là một điểm x0 sao cho với ∀x ∈ [ x 0 − b / 2, x 0 + b / 2] thì x ∈ K. Tại mỗi vị trí x0 của K, gb(x0) được định nghĩa là tổng tất cả các f(x) với x ∈ K: g b (x 0 ) = x0 +b / 2 ∑ f (x) (3) x0 −b / 2 Nếu f(x) có dạng hình sin và với b nhỏ hơn chu kỳ của f(x), ta có một số nhận xét về gb(x) như sau: - Hàm gb(x) cũng có dạng sin. - Tần số của gb(x) giống tần số của hàm f(x). - Với mọi x0, nếu gb(x0) đạt giá trị cực đại, thì f(x0) cũng đạt giá trị cực đại. - gb(x) có hình dạng trơn hơn f(x), nghĩa là gb(x) ít bị ảnh hưởng bởi nhiễu hơn so với f(x). - Với b=T/2, T là chu kỳ của f(x), thì biên độ của gb(x) đạt giá trị cực đại. Để chứng minh nhận xét là đúng đắn, giả sử f(x) là liên tục, và f(i)=x-signature(i). Hàm f(x) có dạng như sau: f (x) = a(sin(ωx) + 1) + n(x) Sở dĩ cộng thêm 1 để f (x) ≥ 0 ∀x . a: biên độ ...
Nội dung trích xuất từ tài liệu:
Một số thuận toán cải tiến cho đánh giá tần số vân cục bộ của ảnh vân tay T¹p chÝ Khoa häc & C«ng nghÖ - Sè 1(45) Tập 2/N¨m 2008 MỘT THUẬT TOÁN CẢI TIẾN CHO ĐÁNH GIÁ TẦN SỐ VÂN CỤC BỘ CỦA ẢNH VÂN TAY Ngô Quốc Tạo (Viện Công nghệ Thông tin - Viện KH&CN Việt Nam) Đào Thanh Khiết - Bùi Đức Giang (Trường ĐH Công nghệ - ĐHQG Hà Nội) 1. Giới thiệu Ảnh vân tay bao gồm các đường vân có hướng, được phân cách bởi các rãnh vân. Trong một vùng vân tay nhỏ, nếu không có sự xuất hiện của các minutiae và các điểm đặc biệt, thì các đường vân và rãnh vân song song với nhau, tạo nên một hình sóng có hướng và tần số ổn định. Do vậy hướng vân cục bộ và tần số vân cục bộ là hai thuộc tính nội tại của ảnh vân tay. Đây là các tham số chính cho các quá trình xử lý vân tay. O’Gorman và Nickerson (1988, 1989) đã dùng các bộ lọc dải thông để nâng cao ảnh vân tay [2, 3]. Hong, Wan, Jain (1998) sử dụng bộ lọc Gabor để nâng cao ảnh [1]. Các thuật toán này đều lấy tham số là hướng và tần số vân cục bộ. Nếu tần số vân cục bộ được đánh giá không chính xác, thì sẽ dẫn đến kết quả tạo ra các đường vân sai, hoặc làm mất các chi tiết của ảnh vân tay. Do đó một thuật toán đánh giá tần số vân tin cậy là rất hữu ích cho quá trình xử lý vân tay hiệu quả. Hong, Wan, Jain đã đề xuất thuật toán sử dụng x-signature để đánh giá tần số cục bộ của đường vân. Thuật toán tìm các đỉnh của x-signature và tính khoảng cách trung bình giữa các đỉnh này, tần số cục bộ thu được là nghịch đảo của khoảng cách trung bình [1]. Phương pháp này đơn giản và có độ phức tạp tính toán thấp, tuy nhiên rất khó để tìm các đỉnh của x-signature khi có nhiễu. Trong bài báo này, chúng tôi đề xuất một thuật toán cải tiến, nhằm hạn chế tối đa ảnh hưởng của nhiễu. 2. Phương pháp đánh giá tần số vân cục bộ của Hong, Wan, Jain (1998) Tần số vân cục bộ là khác nhau với các vân tay khác nhau, và cũng có thể khác nhau đối với các vùng khác nhau trong cùng một vân tay. Hong, Wan, Jain đã đánh giá tần số vân cục bộ bằng cách đếm số pixel trung bình giữa hai đỉnh cấp xám của hai đường vân liên tiếp nhau [1] (gọi tắt là thuật toán HWJ). Tần số f ij tại ( x i , y j ) được tính như sau: hướng vân cục bộ khối 16 x 16 cửa sổ 32 x 16 x-signature Hình 1. Minh họa khối vân tay và x-signature. 68 T¹p chÝ Khoa häc & C«ng nghÖ - Sè 1(45) Tập 2/N¨m 2008 1. Chia ảnh vân tay thành các khối w x w (16 x 16). 2. Với mỗi khối có tâm là ( x i , y j ) , ta định nghĩa một cửa sổ l x w (32x16) có hướng, cũng có tâm là ( x i , y j ) , được đặt sao cho hướng chiều rộng trùng với hướng của đường vân tại vùng lân cận của ( x i , y j ) (xoay hệ tọa độ sao cho trục y trùng với hướng vân cục bộ). 3. Với mỗi khối có tâm là ( x i , y j ) , tính x-signature={X0,X1,…,Xl-1}, là tổng các cấp xám được tích lũy theo trục x trong cửa sổ. Cách làm này có tác dụng loại bỏ ảnh hưởng của các nhiễu nhỏ, giúp sự tích lũy cấp xám được làm trơn hơn. Cụ thể ta có: 1 w −1 ∑ G(u, v), k = 0,1,..., l − 1 w d=0 w l u = x i + (d − ) cos O(x i , y j ) + (k − ) sin O(x i , y j ) 2 2 w l v = y j + (d − ) sin O(x i , y j ) − (k − ) cos O(x i , y j ) 2 2 Xk = (1) với O là bản đồ hướng, và O(xi,yj) là hướng tại điểm (xi,yj). 4. f ij được tính bằng nghịch đảo của khoảng cách trung bình giữa hai đỉnh liên tiếp của x-signature. Nếu không có các minutiae và các điểm đặc biệt xuất hiện trong cửa sổ hướng, thì xsignature sẽ hình thành một sóng dạng sin rời rạc và có cùng tần số với các đường vân và rãnh vân trong cửa sổ đó. Gọi Tij là khoảng cách trung bình giữa hai đỉnh liên tiếp của x-signature, khi đó tần số fij được tính như sau: fij = 1 Tij (2) Nếu không có đỉnh nào được tìm thấy trong x-signature, thì tần số được gán giá trị -1 để phân biệt với các tần số đúng khác. Thuật này đơn giản và nhanh. Tuy nhiên, nhược điểm là khó tìm được hai đỉnh cấp xám liên tiếp nhau trong các ảnh vân tay có nhiễu. Trong trường hợp này, tác giả gợi ý dùng một nội suy và bộ lọc thông thấp. 3. Nhận xét và đề xuất x-signature Để thấy rõ hơn nhược điểm của thuật toán đánh giá tần số cục bộ HWJ, ta xét một ví dụ đơn giản của x-signature như sau: 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 position Hình 2: Biểu đồ minh họa ví dụ của x-signature. 69 T¹p chÝ Khoa häc & C«ng nghÖ - Sè 1(45) Tập 2/N¨m 2008 Nhìn hình 3.9, ta thấy x-signature có dạng hình sin với chu kỳ là 6, và có một điểm nhiễu ở vị trí 13. Tuy nhiên theo thuật toán HWJ, ta sẽ tìm được 4 đỉnh ở các vị trí 4, 10, 13, 16. Nên khoảng cách trung bình thu được giữa hai đỉnh liên tiếp là 4. Nói cách khác chu kỳ của xsignature thu được từ HWJ là 4, không đúng với chu kỳ thật. b x-signature 8 6 4 2 b/2 x0 0 1 2 3 4 5 6 7 8 9 10111213141516171819 position Hình 3: Minh họa cửa sổ K. Nhằm khắc phục nhược điểm của thuật toán HWJ, tôi đề xuất một thuật toán cải tiến nâng cao độ chính xác của tần số tìm được khi có ảnh hưởng của nhiễu. Để thuận tiện, ta đặt f=x-signature. Thuật toán giả sử f(x) là một hàm có dạng hình sin. Ta sử dụng một cửa sổ K có a) Thuật toán gửi/nhận lệnh/dữ liệu của PC b )Thuật toán gửi/nhận lệnh/dữ liệu của nút mạngđộ rộng là b, cho trượt trên f(x). Vị trí của cửa sổ K là một điểm x0 sao cho với ∀x ∈ [ x 0 − b / 2, x 0 + b / 2] thì x ∈ K. Tại mỗi vị trí x0 của K, gb(x0) được định nghĩa là tổng tất cả các f(x) với x ∈ K: g b (x 0 ) = x0 +b / 2 ∑ f (x) (3) x0 −b / 2 Nếu f(x) có dạng hình sin và với b nhỏ hơn chu kỳ của f(x), ta có một số nhận xét về gb(x) như sau: - Hàm gb(x) cũng có dạng sin. - Tần số của gb(x) giống tần số của hàm f(x). - Với mọi x0, nếu gb(x0) đạt giá trị cực đại, thì f(x0) cũng đạt giá trị cực đại. - gb(x) có hình dạng trơn hơn f(x), nghĩa là gb(x) ít bị ảnh hưởng bởi nhiễu hơn so với f(x). - Với b=T/2, T là chu kỳ của f(x), thì biên độ của gb(x) đạt giá trị cực đại. Để chứng minh nhận xét là đúng đắn, giả sử f(x) là liên tục, và f(i)=x-signature(i). Hàm f(x) có dạng như sau: f (x) = a(sin(ωx) + 1) + n(x) Sở dĩ cộng thêm 1 để f (x) ≥ 0 ∀x . a: biên độ ...
Tìm kiếm theo từ khóa liên quan:
Tạp chí khoa học Thuận toán cải tiến Đánh giá tần số vân cục bộ Ảnh vân tay Tần số vân cục bộTài liệu liên quan:
-
6 trang 306 0 0
-
Thống kê tiền tệ theo tiêu chuẩn quốc tế và thực trạng thống kê tiền tệ tại Việt Nam
7 trang 272 0 0 -
5 trang 234 0 0
-
10 trang 219 0 0
-
8 trang 218 0 0
-
Khảo sát, đánh giá một số thuật toán xử lý tương tranh cập nhật dữ liệu trong các hệ phân tán
7 trang 216 0 0 -
Quản lý tài sản cố định trong doanh nghiệp
7 trang 208 0 0 -
6 trang 207 0 0
-
Khách hàng và những vấn đề đặt ra trong câu chuyện số hóa doanh nghiệp
12 trang 206 0 0 -
9 trang 168 0 0