Danh mục

PHƯƠNG TRÌNH ĐƯA VỀ DẠNG: ax + b = 0 PHƯƠNG TRÌNH TÍCH

Số trang: 5      Loại file: pdf      Dung lượng: 241.11 KB      Lượt xem: 8      Lượt tải: 0    
Xem trước 2 trang đầu tiên của tài liệu này:

Thông tin tài liệu:

Tham khảo tài liệu phương trình đưa về dạng: ax + b = 0 phương trình tích, tài liệu phổ thông, toán học phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả
Nội dung trích xuất từ tài liệu:
PHƯƠNG TRÌNH ĐƯA VỀ DẠNG: ax + b = 0 PHƯƠNG TRÌNH TÍCH BUỔI 12: PHƯƠNG TRÌNH ĐƯA VỀ DẠNG: ax + b = 0 PHƯƠNG TRÌNH TÍCH Ngày soạn : 31 - 01 - 2010A. MỤC TIÊU :* Củng cố , hệ thống kiến thức về phương pháp giải phương trình đưa về dạng ax + b;phương trình tích* Nâng cao kỷ năng giải phương trình cho HS* Vận dụng thành thạo kỹ nănggiải Pt vào các bài toán cụ thểB. BÀI TẬP : Hoạt động của GV Hoạt động của HS1. Ví dụ 1Giải các Pt: a) 8(3x - 2) - 14x = 2(4 - 7x) + 15xa) 8(3x - 2) - 14x = 2(4 - 7x) + 15x  24x - 16 - 14x = 8 - 14x + 15xBiến đổi Pt như thế nào?  24x - 14x + 14x - 15x = 8 + 16 24 8  9x = 24  x = x= 9 3 2 2 b)  x  5  x  2  3 4x  3   5  xb)  x  5  x  2  3 4x  3   5  x  x2  7x 10 12x  9  25 10x  x2Thực hiện phép nhân, thu gọn Pt để dưavề dạng ax = - b 6  5x  6  x  5 c) x(x + 3) - 3x = (x + 2)3 + 1 2c) x(x + 3)2 - 3x = (x + 2)3 + 1 2 3 2  x(x + 6x + 9) - 3x = x + 6x +12x + 8 + 1Hãy biến đổi tương đương để giải Pt này 3 2 3 2  x + 6x + 9x - 3x = x + 6x +12x + 9 3  6x = 12x + 9  - 6x = 9  x = 2 x  4 3 x  1 9 x  2 3x  1 x  4 3 x  1 9 x  2 3x  1d)    d)    3 4 8 12 3 4 8 12Biến đổi để giải Pt này như thế nào?  8(x - 4) - 6(3x + 1) = 3(9x - 2) + 2(3x - 1)  8x - 32 - 18x - 6 = 27x - 6 + 6x - 2  -10x - 38 = 33x - 8  - 43x = 30  30 x= 432. Ví dụ 2: Giải các Pt 1909  x 1907  x 1905  x 1903  x HS ghi đề bài, tìm cách giảia)    40 91 93 95 97Ta có nên quy đồng mẫu hay không? Vì HS trả lờisao ?Em có nhận xét gì về tổng của tử và mẫu 1909  x 1907  x 1905  x 1903  x a)    40của mỗi phân thức 91 93 95 97Vậy, ta biến đổi Pt như thế nào? 1 1 1 1  (2000 - x)      = 0  91 93 95 97   2000 - x = 0  x = 2000 x  999 x  896 x  789 b)   6 x  999 x  896 x  789 99 101 103b)   6 99 101 103  x  999   x  896   x  789   1    2    3  0   99   101   103  x  1098 x  1098 x  1098   0  99 101 103 1 1 1  (x - 1098)    = 0  x = 1098 ...

Tài liệu được xem nhiều: