Sáng kiến kinh nghiệm THCS: Rèn kỹ năng sử dụng bất đẳng thức Cauchy (Côsi) cho học sinh Trung học cơ sở
Số trang: 41
Loại file: pdf
Dung lượng: 1.60 MB
Lượt xem: 12
Lượt tải: 0
Xem trước 5 trang đầu tiên của tài liệu này:
Thông tin tài liệu:
Mục đích nghiên cứu nhằm rèn luyện kỹ năng giải loại toán này có ý nghĩa hết sức quan trọng đối với học sinh: Giúp các em củng cố và hệ thống hoá được nhiều kiến thức , vận dụng một cách linh hoạt, sáng tạo kiến thức của bậc học THCS để có cách giải thông minh và phù hợp. Bên cạnh đó nó giúp cho các em luôn luôn có những suy nghĩ khoa học, giúp các em đạt được hiệu quả cao nhất trong công việc và cuộc sống đời thường. Mời các bạn cùng tham khảo!
Nội dung trích xuất từ tài liệu:
Sáng kiến kinh nghiệm THCS: Rèn kỹ năng sử dụng bất đẳng thức Cauchy (Côsi) cho học sinh Trung học cơ sở PHÒNG GIÁO DỤC VÀ ĐÀO TẠO HUYỆN MỸ ĐỨC TRƢỜNG TRUNG HỌC CƠ SỞ BỘT XUYÊN ĐỀ TÀI SÁNG KIẾN KINH NGHIỆMRÈN KỸ NĂNG SỬ DỤNG BẤT ĐẲNG THỨC CAUCHY (CÔSI) CHO HỌC SINH TRUNG HỌC CƠ SỞ LĨNH VỰC: TOÁN HỌC TÁC GIẢ: NGUYỄN TRỌNG TUÂN CHỨC VỤ: GIÁO VIÊN NĂM HỌC : 2012-2013 1 MỤC LỤC Nội dung TrangTT1 Sơ yếu lý lịch 32 A. Phần mở đầu 43 54 55 64 1 (côsi) 65 2 (côsi) 76 2.1. Đánh giá từ trung bình cộng sang trung bình nhân kết hợp chọn điểm rơi 77 2.2. Đánh giá từ trung bình nhân sang trung bình kết hợp chọn điểm rơi 168 2.3. Phương pháp đổi biến số 229 2.4. Các bất đẳng thức thường dùng được suy ra từ bất đẳng thức Cauchy (Côsi) 2610 3. Kết quả 3811 3912 41 2 CỘNG HOÀ XĂ HỘI CHỦ NGHĨA VIỆT NAM Độc lập – Tự do – Hạnh phúc. ----------o0o---------- SÁNG KIẾN KINH NGHIỆM SƠ YẾU LÝ LỊCH Họ và tên : NGUYỄN TRỌNG TUÂN Ngày tháng năm sinh : 05/10/1976 Năm vào ngành : 10/09/1997 : Giáo viên : TrườngTHCS Bột Xuyên- Mỹ Đức-Hà Nội. Trình độ chuyên môn : Đại học. Bộ môn giảng dạy : Toán học. Khen thưởng : Giáo viên dạy giỏi cấp thành phố Chiến sĩ thi đua cấp cơ sở. 3A. PHẦN MỞ ĐẦU 1. Lí do chọn đề tài: Trong nhà trường phổ thông môn Toán có một vai trò, vị trí và ý nghĩahết sức quan trọng góp phần phát triển nhân cách, năng lực trí tuệ chung nhưphân tích, tổng hợp, trừu tượng hóa, khái quát hóa, ….Rèn luyện những đức tínhcủa người lao động trong thời kỳ mới như tính cẩn thận, chính xác, tính kỷ luật,tính phê phán, tính sáng tạo, bồi dưỡng óc thẩm mỹ. Bên cạnh đó những tri thứcvà kỹ năng toán học cùng với những phương pháp làm việc trong toán học trởthành công cụ để học tập những môn học khác trong nhà trường, là công cụ củanhiều ngành khoa học khác nhau, là công cụ để hoạt động trong đời sống thực tếvì vậy toán học là một thành phần không thể thiếu của trình độ văn hóa phổthông. Chứng minh bất đẳng thức là một dạng toán phổ biến và quan trọng trongchương trình toán phổ thông, rất thường gặp trong các kỳ thi chọn học sinh giỏi,thi tuyển sinh vào các trường chuyên, lớp chọn. Để giải được loại toán này đòihỏi học sinh phải biết cách vận dụng thành thạo nội dung kiến thức đã được họcbên cạnh đó còn phải biết phân tích bài toán một cách hợp lý mới có thể tìmđược lời giải cho bài toán. Tuy nhiên trong chương trình toán THCS thời lượngdành cho nội dung này không nhiều do đó học sinh thường gặp nhiều khó khănkhi gặp dạng bài này. Các bài toán chứng minh bất đẳng thức rất đa dạng và phong phú. Xét vềcả lý luận và thực tiễn dạy học đều chứng tỏ chúng rất có hiệu quả trong việcphát triển tư duy cho học sinh.duy k hiện nay, và qua thực tiễnkiểm tra và giảng dạy học sinh ở trường , tôi nhận thấy việc hình thành nhữngkiến thức và kĩ năng mới trong sử dụng Bất đẳng thức Cauchy ( Côsi ), vậndụng một cách sáng tạo nhất, thông minh nhất trong việc học toán, trong cuộcsống cho học sinh là một nhiệm vụ hết sức quan trọng của người giáo viên. Đólà lý do tôi chọn đề tài này. 2. Phạm vi và thời gian thực hiện đề tài Nghiên cứu về phương pháp giải toán bất đẳng thức, cực trị thông qua“rèn luyện kỹ năng sử dụng bất đẳng thức Cauchy (Côsi)” đặc biệt là cácphương pháp chứng minh và bài tập vận dụng để giúp học sinh có thể học tốthơn và hình thành những kiến thức, kĩ năng mới, vận dụng một cách linh hoạt,sáng tạo trong việc học toán cũng như trong cuộc sống. Thời gian thực hiện 1 năm ( Năm học 2012-2013) 4 3. Mục đích nghiên cứu: Có nhiều phương pháp được áp dung trong chứng minh bất đẳng thức : như biến đổi tương đương, sử dụng các bất đẳng thức cơ bản, làm trội, làm ...
Nội dung trích xuất từ tài liệu:
Sáng kiến kinh nghiệm THCS: Rèn kỹ năng sử dụng bất đẳng thức Cauchy (Côsi) cho học sinh Trung học cơ sở PHÒNG GIÁO DỤC VÀ ĐÀO TẠO HUYỆN MỸ ĐỨC TRƢỜNG TRUNG HỌC CƠ SỞ BỘT XUYÊN ĐỀ TÀI SÁNG KIẾN KINH NGHIỆMRÈN KỸ NĂNG SỬ DỤNG BẤT ĐẲNG THỨC CAUCHY (CÔSI) CHO HỌC SINH TRUNG HỌC CƠ SỞ LĨNH VỰC: TOÁN HỌC TÁC GIẢ: NGUYỄN TRỌNG TUÂN CHỨC VỤ: GIÁO VIÊN NĂM HỌC : 2012-2013 1 MỤC LỤC Nội dung TrangTT1 Sơ yếu lý lịch 32 A. Phần mở đầu 43 54 55 64 1 (côsi) 65 2 (côsi) 76 2.1. Đánh giá từ trung bình cộng sang trung bình nhân kết hợp chọn điểm rơi 77 2.2. Đánh giá từ trung bình nhân sang trung bình kết hợp chọn điểm rơi 168 2.3. Phương pháp đổi biến số 229 2.4. Các bất đẳng thức thường dùng được suy ra từ bất đẳng thức Cauchy (Côsi) 2610 3. Kết quả 3811 3912 41 2 CỘNG HOÀ XĂ HỘI CHỦ NGHĨA VIỆT NAM Độc lập – Tự do – Hạnh phúc. ----------o0o---------- SÁNG KIẾN KINH NGHIỆM SƠ YẾU LÝ LỊCH Họ và tên : NGUYỄN TRỌNG TUÂN Ngày tháng năm sinh : 05/10/1976 Năm vào ngành : 10/09/1997 : Giáo viên : TrườngTHCS Bột Xuyên- Mỹ Đức-Hà Nội. Trình độ chuyên môn : Đại học. Bộ môn giảng dạy : Toán học. Khen thưởng : Giáo viên dạy giỏi cấp thành phố Chiến sĩ thi đua cấp cơ sở. 3A. PHẦN MỞ ĐẦU 1. Lí do chọn đề tài: Trong nhà trường phổ thông môn Toán có một vai trò, vị trí và ý nghĩahết sức quan trọng góp phần phát triển nhân cách, năng lực trí tuệ chung nhưphân tích, tổng hợp, trừu tượng hóa, khái quát hóa, ….Rèn luyện những đức tínhcủa người lao động trong thời kỳ mới như tính cẩn thận, chính xác, tính kỷ luật,tính phê phán, tính sáng tạo, bồi dưỡng óc thẩm mỹ. Bên cạnh đó những tri thứcvà kỹ năng toán học cùng với những phương pháp làm việc trong toán học trởthành công cụ để học tập những môn học khác trong nhà trường, là công cụ củanhiều ngành khoa học khác nhau, là công cụ để hoạt động trong đời sống thực tếvì vậy toán học là một thành phần không thể thiếu của trình độ văn hóa phổthông. Chứng minh bất đẳng thức là một dạng toán phổ biến và quan trọng trongchương trình toán phổ thông, rất thường gặp trong các kỳ thi chọn học sinh giỏi,thi tuyển sinh vào các trường chuyên, lớp chọn. Để giải được loại toán này đòihỏi học sinh phải biết cách vận dụng thành thạo nội dung kiến thức đã được họcbên cạnh đó còn phải biết phân tích bài toán một cách hợp lý mới có thể tìmđược lời giải cho bài toán. Tuy nhiên trong chương trình toán THCS thời lượngdành cho nội dung này không nhiều do đó học sinh thường gặp nhiều khó khănkhi gặp dạng bài này. Các bài toán chứng minh bất đẳng thức rất đa dạng và phong phú. Xét vềcả lý luận và thực tiễn dạy học đều chứng tỏ chúng rất có hiệu quả trong việcphát triển tư duy cho học sinh.duy k hiện nay, và qua thực tiễnkiểm tra và giảng dạy học sinh ở trường , tôi nhận thấy việc hình thành nhữngkiến thức và kĩ năng mới trong sử dụng Bất đẳng thức Cauchy ( Côsi ), vậndụng một cách sáng tạo nhất, thông minh nhất trong việc học toán, trong cuộcsống cho học sinh là một nhiệm vụ hết sức quan trọng của người giáo viên. Đólà lý do tôi chọn đề tài này. 2. Phạm vi và thời gian thực hiện đề tài Nghiên cứu về phương pháp giải toán bất đẳng thức, cực trị thông qua“rèn luyện kỹ năng sử dụng bất đẳng thức Cauchy (Côsi)” đặc biệt là cácphương pháp chứng minh và bài tập vận dụng để giúp học sinh có thể học tốthơn và hình thành những kiến thức, kĩ năng mới, vận dụng một cách linh hoạt,sáng tạo trong việc học toán cũng như trong cuộc sống. Thời gian thực hiện 1 năm ( Năm học 2012-2013) 4 3. Mục đích nghiên cứu: Có nhiều phương pháp được áp dung trong chứng minh bất đẳng thức : như biến đổi tương đương, sử dụng các bất đẳng thức cơ bản, làm trội, làm ...
Tìm kiếm theo từ khóa liên quan:
Sáng kiến kinh nghiệm Sáng kiến kinh nghiệm THCS Bất đẳng thức Cauchy Phương pháp đổi biến số Phát triển tư duy cho học sinhTài liệu liên quan:
-
Sáng kiến kinh nghiệm Tiểu học: Vận dụng giáo dục STEM trong dạy học môn Khoa học lớp 5
18 trang 2010 21 0 -
47 trang 950 6 0
-
65 trang 752 9 0
-
7 trang 590 7 0
-
16 trang 534 3 0
-
26 trang 477 0 0
-
29 trang 473 0 0
-
23 trang 473 0 0
-
37 trang 473 0 0
-
65 trang 467 3 0