Danh mục

Sáng kiến kinh nghiệm: Ứng dụng đạo hàm giải phương trình

Số trang: 53      Loại file: pdf      Dung lượng: 1.64 MB      Lượt xem: 10      Lượt tải: 0    
10.10.2023

Xem trước 6 trang đầu tiên của tài liệu này:

Thông tin tài liệu:

Sáng kiến kinh nghiệm: Ứng dụng đạo hàm giải phương trình được viết với mong muốn hỗ trợ cho học sinh có thêm một tài liệu bổ sung, giúp các em học tốt hơn trong giải toán các bài toán nâng cao, nhẹ nhàng hơn trong quá trình học toán cũng như ôn thi trong các kì thi THPT quốc gia. Thêm một tài liệu để các giáo viên giảng dạy cho các em trong các kỳ thi, trong quá trình bồi dưỡng thêm cho các em trên lớp.
Nội dung trích xuất từ tài liệu:
Sáng kiến kinh nghiệm: Ứng dụng đạo hàm giải phương trìnhTrường THPT Trấn Biên Ứng dụng đạo hàm giải phương trình SỞ GIÁO DỤC ĐÀO TẠO ĐỒNG NAI Trường THPT TRẤN BIÊN ******************* Mã số:………………………… SÁNG KIẾN KINH NGHIỆM ỨNG DỤNG ĐẠO HÀM GIẢI PHƯƠNG TRÌNH Người thực hiện: VÕ THANH LONG Lĩnh vực nghiên cứu: GIÁO DỤC Quản lý giáo dục: Phương pháp dạy bộ môn: TOÁN Phương pháp giáo dục: Đổi Mới Phương Pháp Giảng Dạy Lĩnh vực khác:…………………………. Năm học: 2014 – 2015Võ Thanh Long Page 1Trường THPT Trấn Biên Ứng dụng đạo hàm giải phương trình SƠ LƯỢC LÝ LỊCH KHOA HỌC I. THÔNG TIN CHUNG CÁ NHÂN 1. Họ và tên VÕ THANH LONG 2. Ngày tháng năm sinh: 02 / 01 / 1977. 3. Giới tính: Nam. 4. Địa chỉ: B9/10, Tổ 4, khu phố 1, Phường Tân Hiệp, Biên Hoà, Đồng Nai. 5. Điện thoại di động: 0918806566. 6. Email: thanhlong1977.bh@gmail.com 7. Đơn vị công tác: Trường THPT Trấn Biên, Biên Hoà, Đồng Nai. II. TRÌNH ĐỘ ĐÀO TẠO  Trình độ chuyên môn cao nhất: Đại học Sư phạm.  Năm nhận bằng: 1999  Chuyên ngành đào tạo: Toán III. KINH NGHIỆM KHOA HỌC  Lĩnh vực chuyên môn có kinh nghiệm: Dạy Toán bậc THPT  Số năm có kinh nghiệm: 14 năm  Các sáng kiến kinh nghiệm đã có trong 5 năm gần đây: 1) 2009 – 2010: Một số phương pháp giải phương trình chứa căn thức 2) 2012 – 2013: Một số phương pháp giải hệ phương trình dành cho học sinh lớp 10. 3) 2013 – 2014: Một số bài toán về đường thẳng trong mặt phẳng. Võ Thanh Long Page 2Trường THPT Trấn Biên Ứng dụng đạo hàm giải phương trình SỞ GIÁO DỤC VÀ ĐÀO TẠO TỈNH ĐỒNG NAI TRƯỜNG THPT TRẤN BIÊN ******************* CHUYÊN ĐỀ ỨNG DỤNG ĐẠO HÀM GIẢI PHƯƠNG TRÌNH I. LÝ DO CHỌN ĐỀ TÀI Trong quá trình giảng dạy, tôi nhận thấy các phương trình không mẫu mực, phương trình bậc cao, phương trình chứa căn thức…là những bài toán khó đối với học sinh phổ thông. Khi giải các bài toán này nếu áp dụng các phép biến đổi thông thường học sinh gặp rất nhiều khó khăn trong việc giải toán. Vì thế mà học sinh không làm được bài, hoặc rất dài dòng trong lời giải, mất nhiều thời gian có thể dẫn đến kết quả sai hoặc bế tắc trong quá trình hoàn thành lời giải bài toán. Khi đó việc dùng “ứng dụng đạo hàm” hay “phương pháp hàm số” là một công cụ rất hay, rất nhanh gọn để giải quyết các bài toán trên, đặc biệt là ứng dụng để giải phương trình, bất phương trình và hệ phương trình. Việc giải quyết các bài toán phương trình chứa căn, phương trình bậc cao, phương trình mũ, logarit, nhất là các phương trình không mẫu mực dùng phương pháp hàm số hay đạo hàm thì việc giải các bài toán trở nên một cách nhẹ nhàng, dễ áp dụng và bài toán được giải nhanh chóng. Tôi xin mạo muội viết lại “Ứng dụng đạo hàm để giải phương trình”, nhằm hỗ trợ cho học sinh có thêm một tài liệu bổ sung, giúp các em học tốt hơn trong giải toán các bài toán nâng cao, nhẹ nhàng hơn trong quá trình học toán cũng như ôn thi trong các kì thi THPT quốc gia. Thêm một tài liệu để các giáo viên giảng dạy cho các em trong các kỳ thi, trong quá trình bồi dưỡng thêm cho các em trên lớp. II. TỔ CHỨC THỰC HIỆN ĐỀ TÀI Trong quá trình giảng dạy trên lớp, sau khi các em học xong tính đơn điệu của hàm số. Tôi thực hiện ôn tập cho các em theo từng chủ đề. Khi giải phương trình, bất phương trình và hệ phương trình , các em giải quyết bài toán bằng các phương pháp đã biết ở lớp 10, lớp 11 rất khó khăn, nhiều em không làm được hoặc không đi đến kết luận cuối cùng Khi đó dưới sự hướng dẫn của giáo viên, dùng đạo hàm hay phương pháp hàm số để giải các bài toán trên thì việc giải toán trở nên nhẹ nhàng hơn, dễ hơn. Trong lớp các em cũng hăng say hơn trong học tập môn toán.Võ Thanh Long Page 3Trường THPT Trấn Biên Ứng dụng đạo hàm giải phương trình III. HIỆU QUẢ CỦA ĐỀ TÀI Do các em ở trường đa số là học sinh khá, giỏi nên các em tiếp thu phương pháp mới một cách nhanh chóng, áp dụng linh hoạt, giải các bài tập tương tự một cách thuần thục, gọn gàng. Từ đó việc giải các bài toán phương trình, hệ phương trình, bất phương trình và hệ bất phương trình không còn là bài tập khó đối với các em. Sau khi áp dụng phương pháp này vào giảng dạy, điểm thi Đại học – Cao đẳng của các em cao hơn hẳn, điều đó thể hiện qua việc bảng xếp hạng điểm thi trên toàn quốc của trường Trấn Biên càng ngày càng tăng bậc, năm sau luôn cao hơn năm trước. IV. ĐỀ XUẤT, KHUYẾN NGHỊ KHẢ NĂNG ÁP DỤNG Trong quá trình giảng dạy, đề tài này áp dụng cho các em từ học sinh trung bình đến các em học sinh khá giỏi đều tiếp thu nhanh chóng và hiệu quả. Các em hứng thú hơn trong học tập. Các Thầy – Cô cũng sử dụng để giảng dạy cho các em học sinh trong lớp giờ bài tập, giờ học tăng tiết, t ...

Tài liệu được xem nhiều:

Gợi ý tài liệu liên quan: